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Abstract
Mutual exclusion has long served as a fundamental construct
in parallel programs. Despite a long history of optimizing
the lower-level lock and unlock operations used to enforce
mutual exclusion, such operations largely dictate perfor-
mance in parallel programs. Speculative Lock Elision, and
more generally Hardware Transactional Memory, allow exe-
cuting atomic regions (ARs) concurrently and speculatively,
and ensure correctness by using conflict detection. However,
practical implementations of these ideas are best-effort and,
in case of conflicts, the execution of ARs is retried a pre-
determined number of times before falling back to mutual
exclusion.
This work explores the opportunities of using cacheline

locking to bound the number of retries of speculative so-
lutions. Our key insight is that ARs that access exactly the
same set of addresses when re-executing can learn that set
in the first execution and execute non-speculatively in the
next one by performing an ordered cacheline locking. This
way the speculative execution is bounded to a single retry.

We first establish the conditions for ARs to be able to
re-execute under a cacheline-locked mode. Based on these
conditions, we propose cleAR, cacheline-locked executed
AR, a novel technique that on the first abort, forces the re-
execution to use cacheline locking. The detection and con-
version to cacheline-locking mode is transparent to software.
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1 Introduction
Shared-memory parallel thread coordination is dominated
by two models: First, historically, is the mutual-exclusion
(ME) model epitomized by critical sections (CS) that are
protected by locks. The second is the transactional memory
(TM) model epitomized by transactions (TX) that rely on
conflict detection and re-tries.

There is an inherent tension in themutual exclusionmodel
regarding the granularity of the CS protected by locks. Using
coarser locking is easier (compared to, for example, using
multiple nested locks), and it means fewer locks and (ex-
pensive) lock operations overall, but perhaps with higher
contention. The transactional model resolves this tension by
relieving the programmer from specifying the locking gran-
ularity, instead relying on detecting conflicts in the dynamic
set of addresses that are accessed in a transaction. Yet, the
speculative nature of a transaction and the need to bound its
re-tries, inevitably leads us back to treating it as a CS with
coarse-grain locking as the fallback path.
In this work, we take a unified view of critical sections

and transactions and discuss them simply as atomic regions:
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An Atomic Region (AR) is a section of code that needs to be
protected to prevent data races that produce an undesired
behavior or result. For us, it makes no difference if the high-
level code is critical-section-based or transaction-based. We
treat both in a unified manner. The duality of critical sections
executed speculatively and transactions executed as critical
sections is apparent in their historical development:

Speculative lock elision (SLE) [35, 36] proposed that locks
can be elided if no conflicts occur, that is, none of the concur-
rently executing ARs write data that is either read or writ-
ten by another AR. Later, hardware transactional memory
(HTM) [17, 19] generalized the idea of speculative execu-
tion of ARs with the minimum programmer effort. In case
of conflicts, threads discard the work done, restore a check-
point prior to the start of the AR, and restart execution. This
process can repeat indefinitely since these techniques suffer
from an unbound number of retries. SLE and currently avail-
able HTM implementations prevent livelocks by having a
threshold for the number of retries to mitigate performance
loss. When the threshold is reached, the fallback path is
taken: a costly serialized mutual-exclusive execution of the
conflicting ARs [6].

An alternative solution to speculative execution of atomic
regions relies on knowing a priori all cachelines that will
be accessed within the region [16, 33]. First, new instruc-
tions are added to the architecture in order to convey the
addresses that will be accessed in the AR to the hardware.
Then, the core executing the atomic region requests exclu-
sive access for the accessed cachelines and locks them in a
predetermined order using available hardware mechanisms
(cache locking Vol 3 - Chapter 9.1.4 [21]). Once all cachelines
have been locked, the execution is guaranteed to be atomic,
and therefore, no rollback mechanisms nor fallback path
are necessary. While this solution can significantly improve
performance over SLE and TM in high-contention scenarios
by avoiding retries, it comes with important disadvantages.
First, it requires adding new instructions, making it incom-
patible with existing shared-memory binaries. Second, it can
degrade performance in low-contention scenarios, since (i)
execution cannot start until all cachelines have been locked
in order and (ii) exclusivity is requested also for cachelines
that are only read, thus causing extra invalidation events.
Still, in high-contention scenarios it is desirable to guar-

antee the success of an AR after a limited number of retries,
such that the cost of falling back to coarse-grain locking
is never paid. In this work we aim to answer the following
question: Is it possible to dynamically learn (in hardware) the
addresses that will be accessed in an AR and effectively use
this knowledge to execute the AR with at most one retry?
Our insight is that there is a non-negligible fraction of

ARs whose particular memory footprint (i) does not change
(i.e., are immutable) on retries and (ii) is bounded to a small
number of cachelines. In such cases, the hardware can learn
the memory footprint when speculatively executing the AR
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Figure 1. ARs that do not change their accessed cachelines
on the first retry

for the first time. When a conflict happens, the AR can re-
execute locking the learned cachelines so that completion
is guaranteed with a single retry. To motivate our approach,
we measure in our benchmark set the mutability properties
of ARs (see section 3). Figure 1 shows a runtime view of the
ARs that access a memory footprint lower than 32 cachelines
and remains immutable on the first retry, representing on
average the 60.2% of the ARs that abort after the first attempt.
However, even with such dynamic knowledge enforcing an
“at most single-retry execution” of an AR without revert-
ing to coarse-grain locking is not trivial. This is where the
contributions of this work are focused.

Contributions: We propose Cacheline-locked executed
Atomic Region (cleAR), a technique that bounds the number
of AR retries to one, as long as their memory footprint is
kept immutable between an aborted and a re-tried execution.
(Recall here that it does not matter to us if the AR is coded
as a critical section or as a transaction.) cleAR performs an
optimistic execution of the AR expecting no thread conflicts
while gathering critical information about the memory foot-
print and feasibility of executing the AR non-speculatively
using cacheline locking. This optimistic execution serves
two purposes:

• Like in speculative approaches, it avoids the overhead
of cacheline locking in low-contention scenarios.

• It learns the cachelines that have to be locked to ex-
ecute the AR, like in cacheline-locking approaches, in
case a retry is needed.

Of course, the immutability of the memory footprint of
an AR cannot always be dynamically guaranteed. We must
decide whether to (i) try the transaction’s re-execution using
fine-grain locking but being alert of possible alterations in
the memory footprint or (ii) revert to the baseline approach
(SLE or HTM).

We further discuss cleAR with only in-core speculation,
i.e., within the confines of a speculative instruction win-
dow delimited by a reorder buffer (ROB), in section 4 and
extend this to out-of-core speculation in subsection 4.2 if
HTM facilities are available. Note that HTM facilities are not
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a requirement for having cleAR; but if they are available,
cleAR can optimize the execution of transactions.

Lastly, we evaluate cleARwith full-system gem5 (32 cores,
Intel Icelake-like), on a wide range of benchmarks (including
all STAMP benchmarks [30] among others). Compared to
a gem5 TSX-like implementation (Vol 1 – Chapter 16 [21]),
cleAR improves performance on average by 35.0% and by
23.3% when implemented over a PowerTM baseline [9]. Per-
formance improvement comes mainly from a reduction in
the average retry count per committed AR (from 7.9 to 1.6).
Indeed, cleAR increases the ARs committed after the first try
by 29.1%, reducing the need to fall back to mutual exclusion
by 21.7%.

2 Background
Based on conflict detection, many approaches have proposed
concurrent execution of ARs. Most of them are specula-
tive and rollback in the case of conflicts. Other more re-
cent approaches are non-speculative and guarantee forward
progress. This section covers both solutions since our pro-
posal relies on both of them.

2.1 Speculative approaches
The Oklahoma update [39] set the basis for speculative solu-
tions based on conflict detection. It arose as a generalization
of load-linked/store-conditional instructions but for multiple
memory locations. It uses a two-phase commit protocol, and
in case of conflicts, retries execution.

Speculative lock elision (SLE) [35], targets traditional crit-
ical sections protected with locks. It starts speculative execu-
tion by omitting the lock acquisition and release operations.
Misspeculation is also detected based on conflicts. Upon fail-
ure, the region undergoes re-execution with lock elision, up
to a predefined retry limit. Exceeding this limit, the execution
enters non-speculative mode with coarse-grain locking.

Hardware transactional memory (HTM) [17] aims to sim-
plify programming by using large ARs, and offloading the
responsibility of achieving concurrency to the hardware. In
HTM, each access to a memory address within the transac-
tion is recorded in either a read or write set, depending on the
operation type. Upon encountering a conflict, i.e., a potential
violation of atomicity, in currently available implementations
the system attempts the execution of the transaction again,
until a certain limit is achieved. Exceeding this limit, HTM
defaults to a non-speculative “fallback” execution mode.
In both SLE and HTM the fallback path is based on ac-

quiring a lock, either the original lock protecting the critical
section (SLE) or a global lock (HTM). When the thread no
longer executing speculatively starts the fallback path, ex-
clusive permissions are acquired for the lock variable, and
it is set to busy. When starting the speculative execution,
the lock address is read and if free, the execution can start.
Threads in speculative mode must include the lock address

in their read set to be notified if any thread starts running
non-speculatively. This mechanism is needed to prevent un-
protected accesses of the fallback path from clashing with
protected accesses of the speculative path.

2.2 Non-speculative approaches
Read-modify-write atomic instructions emerge as the most
efficient protection mechanism for single-address atomic re-
gions. Such instructions rely on cacheline locking, which
guarantees that, between the read and the write, the cache-
line is kept exclusively in the cache of the core executing
the atomic instruction and no other thread can access it.
Cacheline locking offers potential performance improve-
ments over speculative methods (such as load-linked/store-
conditional [22]), albeit with reduced generality.

Paving the way to non-speculative solutions, a hardware-
based implementation of the Multiple Compare and Swap
(MCAS) synchronization primitive was developed by Patel et
al. [33]. Their implementation utilizes two distinct architec-
tural instructions: a first one to populate a table of accessed
addresses and a second one for initiating the cacheline lock-
ing mechanism and MCAS execution. While effective for
data-structure benchmarks using MCAS constructs, their
initial version is susceptible to deadlocks. To address this
limitation, they enable a back-off protocol when directory
conflicts are detected. The paper does not specify the ex-
act back-off strategy, suggesting the probable use of a retry
mechanism, especially in the absence of an alternative fall-
back execution method.
In the same line, MAD atomics [16] introduce a set of

individual architectural instructions designed for atomically
updating a small number of memory locations. The solution
achieves deadlock freedom by locking the accessed cache-
lines in a specific order, such as lexicographical order [38].
New deadlocking scenarios are also addressed in the pa-
per [16]. However, the number of memory addresses that
can be updated is limited by the processor’s architecture,
since both accessed addresses and operating data must be
placed in registers.
A key limitation of the described multi-address atomic

constructs is that accessed addresses need to be known a
priori. As a consequence, they can only be directly applied to
MCAS-friendly applications, so their scope is limited. Other
applications, e.g., STAMP benchmarks, cannot be ported
to use such multi-address atomic constructs without com-
pletely redesigning the benchmarks and reducing the size of
transactions.

3 Analyzing Atomic Regions
Our goal is to extend the scope of non-speculative approaches
making them suitable to a larger number of ARs and without
requiring changes in the programming model. This way, we
can obtain the best of both worlds by dynamically selecting
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1 register uint64_t* a = array[posa];
2 register uint64_t* b = array[posb];
3 atomic {
4 uint64_t elem_a = *a;
5 uint64_t elem_b = *b;
6 *a = elem_b;
7 *b = elem_a;
8 }� �

Listing 1. Inmutable AR. From arrayswap.

� �
1 User *users;
2 atomic {
3 users[from]. bitcoins -= amount;
4 users[to]. bitcoins += amount;
5 }� �
Listing 2. Conditionally Inmutable AR with indirections.
From bitcoin.

� �
1 atomic {
2 auto curr = head ->next;
3 while (curr != tail) {
4 if (curr ->data == val) n_val ++;
5 curr = curr ->next;
6 }
7 }� �

Listing 3. Mutable AR. From sorted-list.

between rollback-on-conflict and cacheline-locking mode:
low-contended ARs can enjoy the benefits of speculative
execution, while high-contended ARs can bound the number
of retries. All this, transparently to software.

Performing cacheline locking in a predetermined address
order requires a previous identification of all cachelines ac-
cessed within the AR. Furthermore, to extract the full poten-
tial of this approach it is important to know if the accessed
footprint change between retries. This section analyses the
ARs found in our wide range of evaluated benchmarks and
characterizes them based on their likeliness of footprint mu-
tations. We first offer some examples of ARs and discuss
their mutability properties.

A simple example with an immutable set of addresses (ex-
tracted from arrayswap) is presented in Listing 1. It accesses
two memory locations: a and b. Furthermore, the locations
are directly accessed in the AR, so no other memory accesses
are performed to compute the locations (i.e., no indirections).
Hence, this AR is immutable, since it will always access the
same cachelines when retrying execution on conflicts.
Listing 2 shows a similar code (extracted from bitcoin),

but requires access to the array users in order to compute
the target addresses inside the same AR (i.e., an indirection).
If the indirection value can be modified by a concurrent AR,

Benchmark # of ARs Immutable Likely Mutableimmutable
arrayswap 2 2 0 0
bitcoin 1 0 1 0
bst 3 0 0 3
deque 2 0 1 1
hashmap 3 0 0 3
mwobject 1 1 0 0
queue 2 0 1 1
stack 2 0 1 1
sorted-list 3 1 0 2
bayes 14 0 5 9
genome 5 0 0 5
intruder 3 0 2 1
kmeans-h 3 1 2 0
kmeans-l 3 1 2 0
labyrinth 3 0 0 3
ssca2 3 2 1 0
vacation-h 3 0 1 2
vacation-l 3 0 1 2
yada 6 1 0 5

Table 1. Characterization of ARs

the set of addresses may mutate on re-tries; otherwise, the
set of addresses can be considered as immutable. We consider
these cases, where the indirection values are not modified by
concurrent ARs, as likely immutable. Note that control de-
pendencies are treated similarly to data dependencies. That
is, if a branch depends on a value loaded inside an AR, it can
lead to a different set of addresses depending on the loaded
value; again if that value is not modified by concurrent ARs
then the address footprint is immutable on re-tries.
On the other hand, Listing 3 (extracted from sorted-list)

shows a scenario where a linked list is traversed. Addresses
are computed by an indirection (curr->next). However, the
indirection values will change when the list is modified.
Therefore, we consider this kind of ARs as mutable, i.e., the
set of accessed cachelines can change across AR executions.
Note that regions that modify their own indirection, are also
classified as mutable.
Based on the previous examples we characterize1 the

benchmarks of our evaluation according to the aforemen-
tioned properties. Table 1 presents for each benchmark (col-
umn 1) the number of ARs that are executed at least once2
(column 2). The table shows then the subset of these ARs
that remain immutable on re-executions in column 3, those
that are likely immutable in column 4, and finally, those that
are mutable in column 5. As Table 1 shows, there is good
potential for an approach to exploit the immutable and likely
immutable ARs.

1These results are obtained from runs with 32 cores and medium size inputs.
2bayes and ssca2 have ARs that are never executed with the execution path
determined by the input.
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4 cleAR Overview
cleAR aims to optimize the execution of ARs by taking ad-
vantage of information gathered during the first speculative
execution attempt regarding the immutability of the set of
addresses accessed in an AR.
In the absence of conflicts, an AR executes unobstructed

similarly to a speculative critical section (e.g., with SLE) or
a transaction (e.g., with HTM). But it is in the presence of
conflicts that cleAR differs from both SLE and HTM, aiming
to discover an efficient way to re-execute the AR after an
abort. To explain the cleAR approach we start with in-core
speculation (SLE), where the speculative state is captured
in (and limited by) the ROB and the store queue (SQ) and
then we proceed to explain the differences with out-of-core
speculation (HTM).

4.1 Discovery with in-core speculation (SLE)
Each new invocation of an AR also forms a discovery phase.
The AR starts in speculative execution (e.g., speculatively
eliding a critical section entry lock), and cleAR tracks the
cachelines accessed within the AR (up to a limit) and detects
indirections in the AR’s executed code. Since there is no
guarantee that two different invocations of the same AR will
use the same set of addresses, the discovery phase runs for
each of the AR invocations, unless the AR has been already
marked as non-convertible (explained below). Two scenarios
are possible during the discovery phase of an AR:

• No conflicts occur: the AR commits as in the baseline.
This is the common case.

• A conflict occurs. This is where cleAR differs from
previous work. Instead of aborting the execution, the
discovery phase continues, in a failed mode, until either
the core’s speculative resources are exhausted or the
end of the AR is reached, whichever comes first. The
reason for this behavior is that discovery needs to see
the whole execution of the AR in order to make an
informed decision on how to attempt a retry. While
this delays the abort of a failed AR, the benefits, as we
show, outweigh the cost.

A discovery phase in failed mode does not alter the mem-
ory state (stores are kept in the SQ) and, furthermore, tries to
limit damage to other ARs by flagging its accesses (coherence
transactions) as coming from a failed mode, and therefore
not constituting new conflicts.
Discovery makes a series of assessments that drive the

decision on how the AR executes after abort. In particular,
discovery hierarchically assesses the following:

1. Does the AR fit the speculation window? If the core’s
speculative resources (ROB, SQ, etc.) are exhausted
before reaching the end of the AR, it is hopeless to
continue discovery. Discovery ends and marks the AR
as non-convertible. If this is already a failed AR, there

is no reason to continue to its end and the AR is im-
mediately aborted.

2. Assuming that the failed AR reaches its end, can we
simultaneously lock the cachelines accessed within the
AR? In discovery, we do not lock cachelines but given a
set of accessed addresses it is straightforward to see if
there are any cache or directory conflicts among them.
This test tells us whether we can rely on efficient, fine-
grain, cacheline locking to enforce atomicity (rather
than the default coarse-grain locking).

3. Is the set of addresses accessed by the AR immutable?
This determination is simply based on the absence of
indirection and the absence of conditional branches
dependent on values accessed inside the AR. Upon
sources of non-determinism (e.g., rdtsc instruction),
affected registers should also be marked as indirec-
tions, although we did not find such instructions in
our workloads.

4.2 Discovery with out-of-core speculation (HTM)
With HTM capabilities, cleAR is no longer restricted by the
in-core speculation window. In contrast to a failed-mode
discovery supported only by in-core speculation, a failed-
mode discoverywithHTM capabilities can retire instructions
from the ROB. Speculation extends beyond the ROB (or other
in-core structures), potentially delaying the abort further.

Speculativememory accesses are tracked at a private cache
level and stores are not allowed to exit the SQ and go to mem-
ory, to avoid causing conflicts with other ARs, if write per-
missions were requested. Thus, the SQ becomes the limiting
factor for the failed-mode discovery in HTM.

4.3 cleAR with in-core speculation (SLE)
Once discovery has made its assessment, a decision can be
taken on how to proceed with the re-execution of a failed AR.
(A committed AR simply discards the discovery assessment
without the need to make a decision.) cleAR introduces
two new modes of execution, specifically designed for the
re-execution of an AR:

• NS-CL: Non-Speculative Cacheline-Locked Execution
• S-CL: Speculative Cacheline-Locked Execution

Going in the reverse order of the hierarchical discovery
assessment, cleAR selects an execution mode (Figure 2) as
follows:

3. NS-CL: Execute non-speculatively with cacheline lock-
ing. Discovery determines that the AR accesses an im-
mutable set of addresses that can all be simultaneously
held locked in the cache. Given that we can lock (in a
deadlock-free order) the set of known addresses in the
cache, before they are used, this means that the AR can
be re-executed entirely in non-speculative mode. This
is the best-case scenario where the AR is re-executed
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Figure 2. Decision tree and execution modes of cleAR

with minimal effort (cacheline locking) and is guaran-
teed to complete non-speculatively without the need
to maintain a speculative (transactional) state that can
be rolled-back.

2. S-CL: Execute speculatively with cacheline locking.
During discovery, the set of accessed cachelines can
be locked in the cache, but the set is not guaranteed to
be immutable. In this scenario, cacheline locking is at-
tempted in hopes that it can get us through the whole
AR (without the need for coarse-grain locking), but a
speculative state is maintained and conflict detection
is active in case i) there is a deviation from the learned
set of addresses, ii) a conflict happens for a non-locked
access (only in S-CL –all– mode), or iii) a request gets
nacked (only in S-CL –writes– mode).

1. Speculative Retry: Discovery cannot even guarantee
that the set of accessed cachelines can be simultane-
ously locked in the cache (or a S-CL execution aborted).
In this case, cacheline locking is not even tried, and
a speculative retry based on conflict detection is at-
tempted, as is typical for SLE (or HTM).

0. Fallback: Since the speculative resources are not even
enough to attempt a speculative retry (or a limited
number of retries has been reached), the fallback path
of the critical section lock acquisition in SLE (or coarse-
grain locking in HTM) is taken.

Both NS-CL and S-CL, before proceeding to lock cache-
lines, ensure that no other AR is in fallback mode by acquir-
ing a read lock on the AR’s mutex lock.

4.4 cleAR with out-of-core speculation (HTM)
For the rest of this work, we use HTM as our baseline. More
specifically, we use an HTM implementation similar to Intel’s
TSX, that provides the necessary mechanisms for cleAR.

Lock memory
addresses

Execute the
Atomic Region

Unlock memory
addresses

Figure 3. Execution flow of an AR running in NS-CL mode

Lock memory
addresses

Speculatively 
Execute

Atomic Region

Unlock memory
addresses

Did
the execution get

aborted?

No

Disable Discovery

Yes

Figure 4. Execution flow of an AR running in S-CL mode

Using a transaction as our baseline AR speculative execution,
the two cleAR execution modes NS-CL and S-CL are adapted
as follows.

4.4.1 NS-CL in HTM. Figure 3 shows the flow diagram
for the NS-CL execution with HTM. Recall that with only
in-core speculation, NS-CL is free to retire instructions from
the ROB due to the non-speculative completion guarantee.
With HTM the same guarantee means that there is no need
for a checkpoint and no need for the conflict manager, which
is deactivated. To prevent conflicts with fallback execution
in other ARs, the fallback lock is read-locked before proceed-
ing. Subsequently, the set of all discovery-learned addresses
is locked into the cache (recall that discovery already de-
termined that the cache can hold all the locked cachelines
simultanously) in a deadlock-free, pre-determined lexico-
graphical order [38], and at the same time the AR begins
execution (without HTM). If the AR tries to access an address
that has not been cacheline-locked, it must wait for it. At the
end of the AR, the cacheline locks are released.

4.4.2 S-CL in HTM. Figure 4 shows the flow diagram for
the execution of S-CLwith HTM. S-CL starts in the sameway
asNS-CL. The fallback lock is read-locked to prevent conflicts
with potential fallback execution in other ARs. Discovery-
learned addresses are also locked into the cache. A question
that arises regarding ARs that contain indirections is whether
to lock solely the memory addresses that are written in the
AR or to also lock the addresses that are only read. Locking all
addresses would, on one hand, lead to successfully executing
this AR, but on the other hand, this would require exclusivity
for addresses shared by multiple ARs (increasing coherence
traffic and the execution time of other ARs). Hence, we opt
for locking both the write set and any read that suffered a
conflict in a previous execution of the AR, in order to avoid
suffering again this conflict.
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Figure 5. Deadlock scenario involving two cores
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Figure 6. Deadlock scenario involving three cores

In S-CL execution mode recovery is necessary in the event
of an unexpected conflict (to a non-locked cacheline). For
this, S-CL relies on HTM capabilities: it creates a checkpoint
and checks for conflicts. If an abort is triggered by any other
reason than memory conflicts, the section is marked as non-
discoverable to prevent future retries that, probably, will not
succeed.

Avoiding deadlocks in S-CL. Loads that do not cacheline-
lock in S-CL mode can prevent the AR from committing, and,
consequently, not releasing locked addresses (a potential
deadlock scenario). The deadlock scenario (illustrated in
Figure 5) happens as follows: i) Core 0 has cacheline b locked
and wants to read cacheline a. ii) Core 1 has cacheline a
locked and wants to read cacheline b. This scenario that
creates a cycle can happen because loads are not constrained
by a predetermined deadlock-free order (only the cacheline
locks are). The loads will never complete because of a remote
cacheline locking. We break the deadlock cycle, by allowing
the requests of the non-locking loads to be “nack-ed” if they
reach locked cachelines (e.g., the request of Load: a to the
cacheline [Locked: a]). Loads that receive a nack, abort
the AR.

This problem escalates as we increase the core count (Fig-
ure 6). Imagine that a third core, Core 2, is trying to access
cachelines a and b 1 , and the request is held (these requests
are not nackable because they come from a non-cacheline-
locking AR). The request to a waits in Core 1 and the request
to b in Core 0 2 . While the requests are waiting the directory
is blocked (in a transient state) for both a and b. If now the
reads of Core 0 and Core 1 start, even if nackeable, they will
remain forever in the blocked directory 3 . ARs in Core 0 and
Core 1 cannot finish and a and b will never be unlocked. To
solve this deadlock, requests to locked cachelines are retried
instead of just delayed: that is, signaling the requester cache

to send the request again, unlocking the directory entry in
the process, and allowing the nack-able read requests to
progress.

5 Implementation Details
In this section, we delve into the implementation details of
cleAR, depicted in Figure 7, including the structures required
and their size. The changes to a baseline HTM architecture
can be categorized into three different groups: i) support
for detecting the immutability of the memory footprint (or-
ange) 1 , ii) support for deciding on the retry executionmode
(purple) 2 4 , and iii) support for tracking the cacheline foot-
print and performing multiple cacheline locking (blue) 3 .
To track immutability during the discovery phase, each

entry in the register file is extended with an indirection bit 1 .
This bit is set when the (physical) register is the destination
of a load, or of any other instruction whose source registers
have the indirection bit set. Hence, the bit propagates along
with register dependencies. When a memory operation or a
branch retires, the indirection bit of their source registers is
checked. If any bit is set to one, the AR is identified as not
immutable.

The Explored Region Table (ERT) 2 stores one transaction
(AR) per entry. Transactions are identified by the address of
their first instruction (Program Counter field). The remaining
information stored in the ERT consists of a Is Convertible bit,
indicating if cacheline locking can be employed on a retry
and a Is Immutable bit, indicating that a retry can start in
NS-CL mode (or in S-CL mode if the transaction is convert-
ible but not immutable). The SQ-Full Counter field is a 2-bit
saturating counter used to track the times a failed discovery
has run out of SQ resources. The counter is increased on
that event, which can appear on several retries of a transac-
tion, and is decreased when the transaction commits. When
the counter saturates, discovery is disabled for that transac-
tion. By default, on each new AR, its entry is initialized with
Is Convertible to one, Is Immutable to one, and the SQ-Full
Counter to zero.

The cache controller is extended with an Address to Lock
Table (ALT) 3 . For each cacheline address learned in the
discovery phase, the ALT stores the address, a Needs Locking
field, indicating if the cacheline needs to be locked, and a
Locked bit, indicating if it has already been locked. The ALT
is used to perform the cacheline locking in lexicographical
order [38], and it requires two extra fields labeled as Hit and
Conflict.
To take into account the possible limited hardware re-

sources [16], the lexicographical order is defined as the set
index of the smallest shared structure, in our case the direc-
tory cache. Addresses are inserted in the ALT sorted by this
lexicographical order. Multiple addresses having the same
lexicographical order, which belong to the same directory
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Figure 7. cleAR architecture with extra field and tables highlighted with colors

set, create a lexicographical conflict. All the conflicting ad-
dresses for a specific lexicographical order form a group.
While previous research breaks these groups into smaller
independent pieces to elide the conflict [38], this is not a
possibility in this case, as all addresses must be locked to
correctly execute the atomic region. Note that all entries in
a group are marked with the Conflict bit except the last one,
delimiting the end of the group.

At the time of locking addresses, when an entry with the
Conflict bit is found, the locking mechanism changes. First,
every entry on the group probes the private cache. If the
cacheline is present and it has exclusive permission, the Hit
bit is enabled. If all entries enable the Hit bit, they are locked
without requiring any communication with the rest of the
cache hierarchy. In the case of missing entries, a request is
sent to lock the specific set in the shared structure (in this
case the directory), such that permission will be eventually
acquired by all cachelines [16].
Finally, the S-CL execution mode relies on an additional

structure that tracks addresses that: i) are not written by
the AR during the discovery phase; and ii) in a previous
execution received an invalidation that caused a conflict and
abort. These addresses are stored in the Conflicting Reads
Table (CRT) 4 , and before starting S-CL execution mode
will be set as Needs Locking in the ALT.

The storage overhead introduced by all these structures is
as follows. The indirection bits require 22.5 bytes since we
model 180 physical registers. ERT contains 16 entries and
it is fully associative (146 bytes). ALT has 32 entries and it
is organized as a CAM with a priority search (276 bytes).

Finally, CRT has 64 entries and it is 8-way associative (544
bytes). The total storage overhead is less than 1KiB (988.5
bytes).

5.1 cleAR implementation in action
In our implementation using HTM, when XBegin is exe-
cuted, the ERT is searched for a matching transaction (AR).
If found and the Is Convertible bit is not set, discovery is not
initiated and the transaction follows the baseline execution.
Otherwise, discovery is initiated.
If the execution reaches XEnd without encountering con-

flicts, the transaction simply commits. In case of conflicts,
the transaction continues performing discovery (entering
failed mode) by holding the abort signal until reaching XEnd
or XAbort. In failed mode, stores do not exit the SQ to go
to the cache. Loads, on the other hand, are allowed to read
from cache, but in case of a miss, their coherence requests
are marked as non-aborting to prevent damage to other trans-
actions. All cacheline addresses accessed during discovery
are inserted into the ALT. Cachelines that are written are
definitely going to be locked so their Needs Locking bit is
set. Cachelines that have not been written in discovery, will
not be locked under S-CL (their Needs Locking bit is cleared),
unless they have caused conflicts in the past (and therefore
are already present in the CRT). In the latter case, their Needs
Locking bit is also set so that they will be locked. On retire-
ment, loads, stores, and branches update the Is Immutable
field of the current AR in the ERT.

The failed-mode discovery phase ends when encountering
XEnd, XAbort, a non-memory-conflict HTM abort, or when
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Core 32-core out-of-order Icelake-like. Fetch/Decode/Re-
namewidth: 5 instructions per cycle; Issue/Commit
width: 10 instructions per cycle; ROB: 352 uops; LQ:
128 entries; SQ: 72 entries; RAS: 64 entries; Branch
predictor: LTAGE

L1 Cache Instructions: 32KiB, 8-way, 1-cycle access latency;
Data: 48KiB, 12-way, 1-cycle access latency.

L2 Cache 512KiB, 8-way, 10-cycle access latency.
L3 Cache 4MiB, 16-way, 45-cycle access latency.
Memory 80-cycle access latency.
Coherence Three-level MESI protocol interconnected with a

crossbar. Directory has 800% coverage.
HTM Intel TSX-like requester wins, and Power-TM. Best

of 1 to 10 retries before taking the fallback lock.

Table 2. Baseline system configuration

the SQ overflows. In the case of reaching the XEnd, an in-
formed decision about the retry mode takes place. If the SQ
overflows, the SQ-Full Counter is increased. In the other two
cases, no further action is taken.

When running in NS-CL or S-CL modes, the fallback lock
is tested. If free, execution continues by locking it as read-
only. Otherwise, the read of the lock spins until the lock
is free. All the addresses that require locking are sent to
memory following a deadlock-free lexicographical order:
Recall that for NS-CL, all ALT addresses are locked; for S-CL,
only the ones with a set Needs Locking bit. While this locking
is taking place, the region starts executing but requests to
yet-unlocked cachelines must block. At any point during the
S-CL execution mode, addresses that do not require locking
and cause a conflict are added to the CRT.When reaching the
XEnd, all addresses are unlocked (with a bulk operation) and
the read-only lock is released, completing the AR execution.

5.2 cleAR interaction with PowerTM
cleAR can be used in systems that implement different HTM
designs. A state-of-the-art design that has proven to yield
good performance with minimum changes is PowerTM [9].
PowerTM increases the priority of a transaction that has al-
ready failed once, entering power mode, but only one trans-
action can be executed in power mode at the same time.
With this priority update, cycles are broken earlier, deliver-
ing an increase in performance. However, as a side effect the
number of aborts in other transactions can increase.
cleAR does not need modifications to work correctly

along with PowerTM, but some enhancements should be
made to further improve performance. In particular, S-CL
and power transactions should not abort each other on a con-
flicting request but they should answer with a nackmessage,
causing the requester to abort.

6 Methodology
Simulation environment. Our evaluation is performed

using gem5 [5] modeling an x86 full-system environment.
We simulate a 32-core processor using the detailed out-of-
order core model. We use Ruby to model the memory hierar-
chy and the coherence protocol and GARNET [1] to model
the interconnection network. The simulated system runs
Ubuntu 18.04 with Linux kernel 5.4.49. We model energy
consumption using McPAT [26, 40] using the most advanced
technology available (22nm) and the default clock gating
scheme for the core.

The processor parameters, similar to an Intel Icelake pro-
cessor, are shown in Table 2. Execution and issue latency is
modeled as measured on real hardware by Fog [14]. We opti-
mized the implementation by preserving the Return Address
Stack (RAS) at the beginning of the transaction and restoring
it when aborting. Otherwise, when a function encapsulates
the xbegin instruction, the return executed at the end of the
function will get a target misprediction. Besides the cost
of a pipeline flush, the transaction may start requesting ad-
dresses, potentially aborting other threads and poisoning
its own read/write sets. We faithfully model the overheads
incurred by the extra resources and the tables required by
cleAR.

Benchmarks. We evaluated the proposal using the fol-
lowing benchmarks:

• Multiple implementations of data structure benchmarks
that include: arrayswap [15], binary search tree (BSTree
[20, 33]), deque [7, 11, 20, 24, 25], hashmap [8, 18],
queue [20, 33], sorted-list [20] and stack [20].

• Two individual applications: Bitcoin, which emulates
operations often made in the bitcoin network [23] over
a set of bitcoin wallets and Mwobject [12, 13], which
performs 4 additions to 4 different values that fall into
the same cacheline.

• The STAMP benchmark suite [30] with the recom-
mended medium inputs.

We measure performance within the region of interest,
that is, the parallel phase that starts after initialization and
ends before output generation. All applications are executed
on 32 threads for a total of 10 times with different seeds and
the trimmed mean is used to remove 3 outliers.

Configurations tested. Our evaluation includes an HTM
implementation with requester-wins, PowerTM, cleAR over
requester-wins, and cleAR over PowerTM. We have per-
formed a design space exploration for the optimal number
of retries for each application. In our evaluation, we run
from 1 to 10 retries for all benchmarks and select the best-
performing one in each case.
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Figure 8. Normalized execution time
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7 Results
This section evaluates the performance and energy implica-
tions of cleAR for the simulated configurations: requester-
wins (B), PowerTM (P), cleAR over requester-wins (C) and
cleAR over PowerTM (W ).

Execution time. Figure 8 shows the execution time nor-
malized to requester-wins. PowerTM shows an average im-
provement over requester-wins of 12.7%. cleAR improves
performance when combined with requester-wins (27.4%)
and PowerTM (35.0%). From the STAMP benchmarks, in-
truder and kmeans-h benefit the most from cleAR, driven by
their reduction of aborts. In most STAMP benchmarks, the
size of the read and write sets is too big to allow for discovery
without running out of resources. This is not the case for
data-structure benchmarks, that greatly benefit from cleAR
in terms of performance.
The overhead introduced from running discovery is usu-

ally negligible (under 1% of the execution time). The notable
exception is intruder where this overhead peaks at 3.4% and
2.9% for requester-wins and PowerTM, respectively. The
main reason is that the ARs are large, but still able to be
executed in S-CL. This means that for each execution of an
AR it must continue running in discovery if aborted. Follow-
ing this concept, labyrinth and yada should have a similar
behavior. However, most of the time, yada is running ei-
ther in fallback mode or commits on the first try, therefore,
discovery is not used or disabled quickly.

Aborts. Figure 9 shows the number of aborts per com-
mitted transaction. While PowerTM can reduce the number

of aborts per committed transaction from 7.9 to 6.6, cleAR
reduces the aborts per committed transaction when com-
bined with requester-wins to 1.6 and 2.3 when combined
with PowerTM.

In general, the reduction of aborts correlates with a re-
duction in the execution time, but there are exceptions. In
bayes, even though it triples the number of aborts, there is
an improvement in execution time. This is related to a sig-
nificant reduction in the amount of fallback executions. On
the other hand, labyrinth suffers from a "serialization" effect
in the execution of fallback transactions due to the fallback
lock cacheline being held locked by the speculative S-CL
execution. This means it can save energy due to a reduction
in aborted transactions, but does not improve performance.
While there should be a maximum number of retries of

10 (since we optimally select the number of retries between
1 and 10 per application), some applications reach higher
values. This is because certain types of aborts do not increase
the counter to take the fallback path. An example would be
aborting because another thread took the fallback lock.

Energy consumption. The reduction in aborts not only
translates into performance benefits but also energy reduc-
tion, as plotted in Figure 10. cleAR improves energy, on
average, by 26.4% over requester-wins and 30.6% when com-
bined with PowerTM, respectively. Energy reduction comes
from two sources: i) cleAR executes faster, therefore reduc-
ing the static energy component, and ii) cleAR executes
fewer instructions, since it aborts fewer times, reducing the
dynamic energy component.
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Figure 11. Abort breakdown per type
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Figure 12. Commit breakdown per mode

B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW B PCW
0.0

0.2

0.4

0.6

0.8

1.0

arrayswa
p bitcoin bst deque hashmapmwobject queue stack sorted-lis

t bayes genome
intruder kmeans-hkmeans-l labyrinth ssca2 vacation-

hvacation-
l yada average

Co
m
m
it
br
ea
kd

ow
n 1-retry n-retry Fallback

Figure 13. Commit breakdown per number of retries (excluding commits at 0 retries)

Moreover, not all aborts have the same performance and
energy penalties. Figure 11 shows the types of aborts grouped
into four categories, from cheap to expensive aborts in terms
of performance: i) Memory Conflict, ii) Explicit Fallback: the
thread attempts to start speculative AR execution but finds
the fallback lock taken, iii) Other Fallback: a thread is ex-
ecuting the AR speculative and another thread takes the
fallback lock), and iv) Others: the rest of scenarios, including

instructions causing exceptions, interrupts, etc. Explicit Fall-
back and Other Fallback imply that the ARs are ending into
fallback execution quite often. This usually translates into
higher contention or bigger ARs.

NS-CL versus S-CL execution mode. Figure 12 shows a
breakdown of the running mode an AR was when it commit-
ted. This includes the original speculative execution, NS-CL
or S-CL, and fallback. mwobject is the only applications that



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Gómez-Hernández et al.

can run mostly in NS-CL mode, while arrayswap runs about
33.1% and 32.7% in NS-CL mode. Some transactions may
change drastically between different executions. Sometimes,
they are eligible to be run in S-CL mode, but at some point
their read and writes sets can become so large that they are
no longer eligible. Bst shows this surprising behaviour, as all
of its transactions were classified as mutable in Table 1, but
while the data structure is small, they can still run in S-CL.

Bounding ARs to a Single Retry. Finally, the goal of
cleAR is to limit the number of retries to a single one. Fig-
ure 13 shows the number of retries it took for a transaction
to commit. For our baseline, on average, applications exceed
the maximum number of retries 37.2% of the time, while
finishing on the first retry only 35.4% of the time. PowerTM
improves performance by completing 46.4% of transactions
in the first retry while leaving only 27.4% in the fallback
path. With cleAR running on requester-wins, a new peak
of 64.2% of transactions is completed in the first retry, with
only 15.5% reaching the fallback path. When combined with
PowerTM we obtain similar numbers (64.4% and 15.4%). We
can conclude that, regardless of the HTM implementation,
cleAR provides substantial improvements in both energy
and performance, while minimizing the number of aborts
and maximizing the number of single-retry executions.

8 Related Work
Lock-free programming is a paradigm where atomic instruc-
tions are employed to avoid the use of software lockingmech-
anisms [11]. Atomic instructions offer an efficient means for
implementing ARs with fine-grain locking, albeit limited
to a single address. Idempotent atomic regions eliminate
the need for locking by encouraging threads to assist each
other rather than compete for resources. As discussed by
Ben-David et al. [4], this method involves executing the same
Atomic Region multiple times to achieve consistent results,
but at the expense of efficiency. This approach is particularly
useful when a thread is interrupted by the operating system
or another application. However, developing and debugging
lock-free algorithms is often time-consuming and challeng-
ing, and transforming algorithms into lock-free variants may
not always be feasible with current hardware. Transactional
Lock Removal (TLR) [36] introduces a hardware mechanism
that optimistically converts lock-based critical sections into
lock-free transactions. However, this technique risks per-
formance degradation in scenarios characterized by high
resource contention, large or complex transactions, inad-
equate hardware support, irregular workload patterns, or
significant system overhead.

Snapshot isolation [27, 28] improves TM systems reducing
abort rates by providing each transaction with a consistent
view of memory, allowing them to operate independently of
concurrent updates and minimizing the need for rollbacks.
However, it can increase the memory overhead due to the

necessity of maintaining multiple data versions and com-
plicates the system design, especially in environments with
high write activity. Lu et al. [29], propose a N-Retry TM
model that delays transactions instead of running them in
fallback. The proposal adds a queue of tasks (similar to the
OpenMP task model [3]), and after N-retries, instead of using
the fallback lock, the task is added back to the task queue
for a future (unbounded) retry. Diegues et. al [10] intro-
duce a software scheduler that establishes a dynamic locking
scheme to serialize transactions in a fine-grained manner.
They perform a statistical analysis by sampling data, and by
requesting locks, transactions are forced to be reordered in a
specific order. Other proposals effectively reduce the number
of aborts by reordering or speculating on data [9, 32, 34, 37].
The problem with these approaches is that the amount of
retries continues to be unbound, and none of them intro-
duce any guarantee of succeeding or limiting the number of
retries.

Nord et al. [31], recently proposed a methodology to opti-
mize the worst-case scenario in software TM for real-time
systems: grouping transactions at compile time to decide
which global lock to use on each specific resource group.

Asgharzadeh et al. [2] propose Free Atomics, a mechanism
that removes the need for memory fences on atomic read-
modify-write (RMW) instructions, thus requiring to manage
several locked cachelines. cleAR also tracks multiple cache-
lines using a queue, in our case inspired by the “lock queue”
implementation of MAD atomics [16]. Cachelines are not
locked until all locks are inserted in the queue, allowing to
establish a deadlock-free ordering for locking the addresses.
In summary, our approach has a unique set of features

that advance beyond the current state-of-the-art techniques:
i) it is agnostic to the speculation method used to handle the
AR; ii) takes advantage of the cacheline-locking support of
modern CPUs for atomic instructions, iii) locks the mem-
ory addresses accessed in the AR, reducing the amount of
possible conflicts to zero in the first retry.

9 Conclusion
In this paper, we introduce cleAR, a hardware technique that
bounds the number of speculative retries, of a significant
portion of the ARs found in many applications, to one. cleAR
captures the memory footprint and mutability properties
of an AR on its first speculative execution. Based on this
information, it makes an informed decision that leads to
three different re-execution modes: 1) a new non-speculative
execution mode, for small immutable ARs, using cacheline-
locking for all accessed addresses that guarantees the success
of the atomic execution while allowing concurrency; 2) a
new speculative execution mode, for small mutable ARs, that
locks the critical part of the AR memory footprint, reducing
the risk of conflicts, and guaranteeing success when the
footprint does not change; 3) a (baseline) speculative retry,
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for larger ARs; As a result, the amount of ARs that can be
completed in a single retry increase by 28.8% when cleAR
is on top of requester-wins and by 18.0% when is on top
of PowerTM. The number of aborts per committed AR is
reduced from 7.9 to 1.6. Overall, with a minimum storage
impact of less than 1KiB per core, average execution time is
reduced by 35.0%.
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