Hardware Cache Locking for All Memory Updates

Ashkan Asgharzadehl, Eduardo José Gémez-Hernandez', Juan M. Cebrian', Stefanos Kaxiras2, Alberto Ros'
'Computer Engineering Department, University of Murcia, Murcia, Spain,
2Department of Information Technology, Uppsala University, Uppsala, Sweden,
{ashkan.asgharzadeh, eduardojose.gomez, jcebrian} @um.es, stefanos.kaxiras@it.uu.se, aros@ditec.um.es

Abstract—Many applications need to perform operations that
involve reading a value from memory, modifying it, and then
writing it back. Multiple architectures provide hardware support
for these operations via read-modify-write (RMW) instructions.
The primary benefit is that the read can request a cacheline with
write permissions, reducing coherence protocol overhead since
the write will find the cacheline with appropriate permissions.
RMWs can be either atomic or non-atomic. Atomic RMWs, used
for synchronization, commonly require (i) locking the cacheline to
guarantee atomicity by preventing invalidations and (ii) enforcing
serialization of instructions in the program (e.g., via memory
fences), which may cause performance degradation based on
the implemented memory consistency model. Non-atomic RMWs,
while not requiring such strict measures, should only be used in
data-race free code sections. However, other cores may invalidate
a cacheline during a non-atomic RMW (e.g., due to false sharing),
flushing the pipeline and causing the loss of write permissions
obtained by the read, which is detrimental to performance.

In this work, we propose a microarchitectural mechanism
that enables non-atomic RMWs to fetch the cacheline locking
it, thus preventing other cores from “stealing” the cacheline
while allowing them to run concurrently with other instructions
in the same core. Our proposal enables concurrent hardware
cache locking for multiple non-atomic RMWs while guaranteeing
deadlock freedom and no programmer/compiler intervention.
We also propose a lock-chaining mechanism to allow multiple
consecutive memory updates to the same cacheline up to a
predefined maximum (to prevent starvation and load imbalance).
Our evaluation using gemS5 full-system simulator shows that for
an eight-core configuration, our proposal improves performance
by up to 5.36% (2.05% on average), requiring just 45 bytes of
storage per core.

Index Terms—Multi-core architectures, micro-architecture,
non-atomic Read-Modify-Write, false sharing, hardware cache
locking.

I. INTRODUCTION

Read-Modify-Write (RMW) instructions, either atomic or
non-atomic, perform the functionality of three individual op-
erations within one: 1) read (load current value from memory),
2) modify (update current value with new value), and 3) write
(store new value to memory). As the data being read will be
modified and written by the same instruction, a well-known
optimization is to request the data to the cache hierarchy with
write permissions (also known as read-for-ownership [16],

This project has received funding from the FEuropean Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 819134), from the
MCIN/AEI/10.13039/501100011033/ and the “ERDF A way of
making Europe”, EU (grant PID2022-1363150B-100), and from
the MCIN/AEI/10.13039/501100011033/ and the European Union

NextGenerationEU/PRTR (grant TED2021-130233BC33).

[22]). This optimization enables the store micro-operation to
write the data to the L1 data cache (L1D) sooner since it
is found in the correct coherence state. In addition, regular
(non-atomic) RMW instmctionsﬂ which are prevalent in CISC
architectures, do not have any atomicity guarantees, that is,
the data being operated on can potentially be accessed and
modified by other cores while the instruction is not yet
completed (has not written its data into the L1D). This is
why RMWs should only be used in data-race free (DRF) code
sections [1]].

When RMVW instructions are contended, i.e., two or more
cores are accessing simultaneously the cacheline updated by
the RMW instruction, their performance can be sub-optimal.
Being RMW expected to be used in DRF regions, this con-
tention is primarily due to the well-known issue of false
sharing [23]], which occurs when different data (i.e., non-
overlapping memory bytes) are located in the same cacheline.
This can happen for various reasons, such as decisions made
by the compiler or the memory allocator. While software
can mitigate false sharing by optimizing data layouts and
employing padding, complete elimination is difficult due to
several inherent challenges [5], [8]I, [17], [20]. These include
dynamic memory allocation, unpredictable runtime access
patterns, complex data structures, reliance on legacy code and
libraries, and performance trade-offs with data alignment.

When false sharing occurs and multiple cores attempt to
update the same cacheline using RMWs simultaneously, the
cacheline is frequently ping-ponged between the cores. This
back-and-forth transfer results in two significant performance
drawbacks. First, the invalidation, in most memory consistency
models, squashes the RMW [11] and forces a pipeline flush
that becomes increasingly costly with deeper pipelines. Sec-
ond, the store micro-operation loses its exclusive permission
before writing to the L1D, generating additional network
traffic to retrieve the required permissions.

In this paper, we propose to adopt hardware cache locking,
a familiar concept used by atomic RMWs [14], to improve
the performance of (non-atomic) RMWs by making them
resistant to contention during their execution. We name our
proposal CLAU (Cache Locking for All Updates). Cache
locking enables a RMW to hold the cacheline during its
execution; from the moment that cacheline has been located in
L1D and read by the load micro-operation until when the new
value is written by the store micro-operation. Cache locking

I'We refer to non-atomic RMW instructions as RMW instructions or RMWs

does not delay the cache access and brings two advantages.
First, the invalidation will wait instead of squashing the RMW.
Second, the store micro-operation will find the cacheline with
exclusive permission at L1D, irrespective of contention. Cache
locking is not intended to convert (non-atomic) RMWs into
atomic ones, and can be disabled by the hardware. We offer
an efficient hardware implementation that enables multiple
RMWs to perform cache locking concurrently while executing
speculatively, without facing deadlocks or livelocks in multi-
COre processors.

In addition to cache locking, we provide an optimization
to exploit cache locality that enables cores to perform several
RMWs to the same cacheline without lifting the cache locking.
We call this feature lock chaining. This further improves
performance by making a RMW find the cacheline already
present and locked in L1D without initiating additional coher-
ence protocol requests. However, a threshold in the maximum
number of chained RMWs needs to be added to avoid load
imbalance or starvation in other cores requesting the same
cacheline.

We evaluate CLAU in the full-system simulator gem5 [21]]
with x86 cores using a large set of parallel workloads (see[VI).
Our simulation results show that RMW-induced pipeline
flushes vanish (e.g., from 62 in a million instructions to 0),
when cache locking and lock chaining are applied to all
RMWs compared to a baseline in which RMWs are exposed
to contention. As a result, performance improves up to 5.36%
(2.05% on average). Our proposal entails a small area overhead
of just 45 bytes per core.

The main contributions of this work are:

« Identifying the performance penalty of RMWs caused by

contention resulting from false sharing.

e Using cache locking mechanism to enhance the perfor-

mance of RMWSs by making them resistant to contention.

« Presenting an efficient and deadlock-free hardware solu-

tion that supports concurrent cache locking for multiple
RMWs.

« Exploiting locality by executing multiple RMWs without

losing write permission (lock chaining).

II. BACKGROUND

In x86-TSO [28] (total store order) conmsistency model,
(non-atomic) RMWs have no special considerations compared
to regular loads and stores. The load micro-operation (load
micro-op) of the RMW can initiate its execution speculatively
and request the cacheline with write permission. Speculative
RMWs should be squashed when the accessed data is invali-
dated by another core (or evicted from L1D) [11]. This is to
guarantee the TSO memory consistency model, by avoiding a
possible load-load reordering observed by other cores. Commit
is performed in order when they reach the head of the reorder
buffer (ROB). Store micro-operation (store micro-op) remains
in the store buffer (SB) to write into L1D complying with
TSO.

Hardware cache locking is a mechanism used by atomic
RMWs to help guarantee atomicity [[14]. This feature locks the

. write,
Time SB

ROB
1] [stuia) [add [idstiA) -][]
. A)

1 read data with write permission,

commit

and lock cacheline!
L1D[T

D
m)

commit write,
s

ROB
- |[stul(a) |

T2 [

2 store hit! write new value to data-cache,

and unlock cacheline!

L1D <’
P

Fig. 1: Functionality of cache-locking RMWs

cacheline in a core upon reading it (with write permission),
either in L1D or another structure inside the core, until an
atomic RMW updates the cacheline by writing a new value to
it, thus releasing the lock. This enables the core to deny invali-
dation or downgrade messages to that cacheline while locked.
Moreover, cache locking avoids L1D replacement policy to
choose a locked cacheline as a victim for eviction. Lastly,
cache locking only stalls external requests; local operations
can access the locked cacheline and read the value [11].

Fig.[T]illustrates the cache-locking mechanism for an atomic
RMW that performs an addition to the data in address A. We
use the same terminology as the x86-TSO gem5 model, and
disregard fences. atomic RWMs are split into three micro-
operations. 1dst1 loads the data (1d), while asking for the
write permission (st) of the cacheline and locks it (1) in the
core (Time T1 - 1). The data is passed to the add micro-
operation to perform the addition. Later when the atomic
RMW commits, the store micro-op, stul, enters the SB.
Finally, when stul reaches the head of SB, it writes the new
value (st) to the L1D and unlocks (ul) the cacheline (Time
T2 - 2).

III. MOTIVATION

As previously mentioned, RMWs are squashed when the
core faces an invalidation (or loss of write permission in
general, e.g., downgrade or eviction) to the cacheline they
access. Unless the code is racy, these invalidation messages
should be related to false sharing, but still cause performance
degradation.

Fig. 2] shows a quantitative study on the impact of such
scenario, which motivates CLAU. The left chart (Fig. @
shows the number of pipeline flushes per million instructions
triggered by the load micro-op of a RMW. This happens when
a RMW has not committed yet, and an invalidation matches
the cacheline accessed by the load micro-op, residing in the
load queue (LQ). We show, only applications that face more
than one flush caused by a RMW per million instructions
(see section for details on the methodology). Out of the
ten shown applications, five face more than 10 flushes per

< 10D © o o o~
10 S A® T o 10 o
2 —~
2 8 ng 8
EN 2 2
== 6 SCZ 6
o= o =
£< 4 s 4
R » 3
ge 2 g2
T
0 0
f = e @ N DL @ S c 0 O @
goé‘gz‘om::& Egé‘gz‘ow;:&
S =3 H.2QE D= S5 3 B 22 c D=
> @8 S 3E s3€EJ >3 8 3= 5 3 E
S 9®5T5 T 3 .QD'lgl— S © %5 C 3 .oD'Igl—
,Qgﬁ%&[e & .ﬂgEEEI e &
=@ S x [< = 8 x e
B E £ =B £ £
8 “°8 g 53 ° 8 38
= E S = E S
o o

(a) Pipeline flushes by invalidation (b) Store Miss

Fig. 2: Drawbacks of contention between non-atomic RMWs

million instructions. Fig. [2b] shows the second reason for
the slowdown: the number of times the store micro-op lacks
exclusive permission when it is about to write to the L1D
(i.e., store miss), per million instructions. This happens when
an invalidation or downgrade message arrives when the RMW
has already committed (and therefore can not be squashed), but
steals the write permission from the store micro-op residing in
the store queue (SQ) or SB. Three of the shown applications
have around 10 misses per million instructions. Since pipeline
flushes are commonly more costly than cache misses, our key
source of improvement lies in avoiding RMW squashes.

IV. CLAU: CACHE LOCKING FOR ALL UPDATES

CLAU is based on two insights: i) we can minimize the
performance overheads of false sharing by enabling cache
locking for multiple speculative RMWs and ii) if several
of these speculative RMWs target the same cacheline, we
can hold the lock across their execution to reduce coherence
traffic. Therefore, we implement two components: cache-
locking RMWs, and lock-chaining RMWs.

A. Cache-Locking RMWs

To avoid pipeline flushes caused by RMWs, CLAU attempts
to initiate cache locking for all RMWs. Therefore, several
cacheline locks may be active at a particular time. This case
happens as non-atomic RMWs do not disable instruction or
memory level parallelism (ILP/MLP) with respect to them
even when adopting cache locking (opposed to atomic RMWs
that serialize execution [3[]). As mentioned in related work [3]],
[O, [13], [24], when using multiple locks, attention needs
to be paid to deadlocks, mainly because a cacheline may
remain locked forever. Some deadlocks are related to the
lock acquisition order on speculative cache locking and the
limitations of the x86-TSO consistency model [3], [9], [24].
For instance, a load or store in a core cannot complete
execution as the cacheline is locked in another core by a cache-
locking RMW, and the cache-locking RMW itself cannot
unlock the cacheline as there is a pending load or store ahead
of it in the pipeline for the same reason (a cyclic dependency
between two cores) [3]]. Other deadlocks are related to cache
inclusion property (this includes any cache level hierarchy and
any shared micro-architectural units like Miss Status Holding

Register) or to the replacement policy not being able to find
not-locked victims [3], [13]. As an example, suppose there is
a pending store ahead of an already executed cache-locking
RMW in the pipeline that needs to be mapped in the same
directory entry assigned to the cache locking RMW. The
directory sends an invalidation to all the memory hierarchy
but the cache locking at L1D refuses eviction. Hence, the store
remains pending, and cache-locking RMW cannot unlock the
cacheline either (as stores write in-order in x86-TSO), and
eventually, the system will end in a deadlock [3].

Since cache locking is just a performance optimization and
does not affect the correctness of RMWSs, we can release
the locks at any time using a watchdog mechanism without
the need to flush the pipeline. RMWs just behave as in
the baseline when that happens. The timeout threshold for
the watchdog depends on the application characteristics and
network contention, and therefore we perform a design space
exploration in section Still, deadlocks are rare, so a
large enough threshold will practically allow all RMWs to
use cache locking until the release of lock.

In addition, CLAU needs to guarantee that a cacheline will
be unlocked either when the RMW is completed (the store
writes to L1D) or squashed, such that the cacheline does
not remain locked forever. Although cache-locking RMWs are
immune to invalidations from external requests, they can be
squashed inside the core due to their speculative execution
(e.g., branch misprediction or memory dependency violation).
If a cache-locking RMW has already locked the cacheline and
is squashed it should unlock the cacheline. Releasing the lock
at squash is consistent with canceling any micro-architectural
state updates a squashed instruction performs.

In some cases cache-locking RMWs can still face LQ snoop
matches carried out by invalidation requests. This scenario
happens when an invalidation finds the target cacheline un-
locked. The expected behavior would be to squash the RMW.
However, we noticed that cache locking offers RMWs an extra
guarantee: cache-locking RMWs do not need to be squashed
on matching LQ snoops if they have not executed yet. The
reason is that in this case the cache-locking RMW has not
loaded the data yet (otherwise the invalidation would have
been stalled by cache locking), and therefore no need to
squash it. On the other hand, If a cache-locking RMW has
already executed, but the cacheline is unlocked (e.g., watchdog
mechanism), then invalidation should squash the cache-locking
RMW; guarantee the memory consistency.

A final aspect is that the load micro-op of RMWs can
obtain its data through store-to-load forwarding, similar to any
regular load instruction. Once RMWs are devised with cache
locking, this well-known optimization is still valid, but with a
small consideration for simplicity: a forwarded cache-locking
RMW only locks a cacheline if it has already acquired write
permission. Otherwise, if forwarding happens but the cacheline
does not have write permission, the cache-locking RMW is
reverted to the baseline behavior. A further consideration
is whether to disable cache locking when forwarding takes
place. In section we show that this alternative improves

performance, so it is better to skip cache locking even if the
cacheline has write permission, in the case of store-to-load
forwarding.

B. Lock-Chaining RMWs

The same cacheline can be accessed by multiple cache-
locking RMWs in the same core. If these cache-locking
RMWs fit inside the instruction window of the core, they can
benefit from locality by not relinquishing the cacheline lock.
Therefore we propose to maintain the cacheline locked for
multiple RMWSs. We call this technique lock chaining and it
favors local updates over external requests. However, a cap on
chaining the lock is needed to avoid starvation in other cores
asking for the same cacheline (see section |VII-B).

Fig. [3] shows an example of lock chaining with two non-
atomic RMWs that use cache locking. First, at time T1 - 1,
the 1dstl; of the first cache-locking RMW executes and
locks cacheline (A). As mentioned before, cache locking only
prevents external cores from accessing the data, while local
load instructions can read from an already locked cacheline.
Hence, 1dst1,, from the second cache-locking RMW, reads
and locks an already locked cacheline (e.g., incrementing a
lock counter, 2 at T1). Then, at time T2, once both cache-
locking RMW s are already committed and have left the ROB,
the stul; of the first cache-locking RMW leaves the SB
and writes to L1D. However, since lock chaining is enabled,
the cacheline remains locked until the completion of the sec-
ond cache-locking RMW (e.g., decrementing a lock counter).
Finally, at time T3, the stul, leaves the SB, updating the
cacheline in L1D and unlocking it, making it available to
other cores. If lock chaining was disabled or the cap of lock
chaining was reached before chaining with the second one,
the first cache-locking RMW would unlock the cacheline upon
writing, making the second cache-locking RMW susceptible
to invalidation requests or losing the write permission.

V. AN EFFICIENT HARDWARE IMPLEMENTATION

This section provides hardware implementation details for
CLAU, which support all the requirements and features dis-
cussed in Section We assume a MESI protocol with a
three-level cache hierarchy.

A. Cache-Locking RMWs

CLAU transforms (non-atomic) RMWs into cache-locking
RMWs. The cache locking functionality is already available
in processors using cache locking for atomic RMWs [14].
The transformation can be easily done at decode time when
generating micro-operations, that is, using ldstl and stul micro-
operations instead of 1dst and st. When a cache-locking RMW
is reverted to the baseline behavior, e.g., due to the timeout,
store-to-load forwarding, or lock chaining limit, the instruction
codes can be reverted (or if a cache locking flag is already
available in the LQ and SQ for atomic operations, just set
and reset that flag is enough). Cache-locking RMWs are
differentiated from atomic RMWs via the instruction op-
codes; cache-locking RMWs are non-atomic RMWs with the
capability of hardware cache locking.

Time commit write

ROB
[ﬂ] [stul,(A) [add [1dstl,(A) [stul, (A) [add [idstl,(A)] | |
7. LS

’ MR
1 Read &
lock cacheline

2 Read &

lock a locked cacheline

L1D

+¢

o 7N I
(i.e., incremets lock-counter) (i.e., increments lock-counter)

commit write
ROB
| [[stul,A) [stui,a)]
LD 3 writes to data cache,
« P
‘F' = = "and decrements lock-counter.
commit write
ROB
iE| | [| [stul,(A) |
L1D P
4 writes to data cache, and ~ (:ﬁa Pt -

decrements lock-counter. ="

Fig. 3: Lock-chaining mechamism

B. Tracking and Handling Locked Cachelines

We assume that baseline MESI protocol has a locked
state per cacheline (needed for atomic operations to support
hardware cache locking). Whenever the load micro-op of a
cache-locking RMW or atomic RMW (Idstl) executes and
reads the cacheline with exclusive permission, the state of the
cacheline will be transformed to locked (the locked state is
only reached from an exclusive state). Consequently, when
the store micro-op of these instructions leaves the SB and
writes to the cacheline, it reverts the state to modified. While
a cacheline is locked, invalidation or downgrade messages
should be stalled. Also, the L1 data cache replacement policy
is responsible for skipping locked cachelines as victims of
eviction and guaranteeing that at least one cacheline per
set is kept unlocked for progressing the non-cache-locking
instructions.

C. Watchdog Mechanism

CLAU uses a timer per core that, when triggered, forces all
cache-locking RMWs to unlock their cachelines. This timer
is enabled when the first cache-locking RMW locks its target
cacheline and reset whenever the store micro-op writes to the
L1 data cacheline (forward progress of cache-locking RMWs).

D. Handling local squashes and re-execution

Any cache-locking RMW that needs to be squashed (trig-
gered by local events such as branch misprediction) or reexe-
cuted (due to memory dependency violation), must unlock the
cacheline. In other words, having the cache locking memory
flag set in a re-executed or squashed load operation (i.e., 1dstl
is being squashed) means it must release the cacheline lock,
by changing the cacheline coherence state back to exclusive.

E. Lock-Chaining RMWs

To enable lock chaining we need two capabilities: (i) revoke
unlocking responsibility from the store micro-operation of
some cache-locking RMWs to hold the cacheline locked for
more than one RMW (only the last cache-locking RMW in the
chain should unlock the cacheline) and (ii) count how many
cache-locking RMWs have executed concurrently to break the
chain when the threshold is reached.

Revoking unlocking responsibility relies on the SQ snoop
that is performed when executing load instructions to find a
possible match for store-to-load forwarding, but narrowing it
to report a cacheline address match. That is, a snoop match
should be reported if the cacheline address bits match, not
if also the offset bits match. The cacheline address match
does not need to prioritize the stores depending on their
program order regarding the load instruction; we consider all
stores (older and younger) as cache-locking RMWs execute
speculatively.

The lock-chaining limit mechanism requires augmenting
each SQ entry with a saturated counter (chain-length, or CL)
that tracks how many cache-locking RMWs have already
locked the same cacheline.

Given these two mechanisms, when a load micro-op of
a cache-locking RMW executes and snoops the SQ while
accessing the L1 data cache, depending on any store micro-
operation from an older or younger cache-locking RMW
matches the same cacheline address and the value of their
CL, the following decisions will be made:

a) the load finds a store in the SQ with no responsibility
for unlocking (or no matching store is found). Then the
new CL for the store micro-op pairs with the executing
load micro-op obtains O value, and the load micro-op
locks the cacheline.

b) a matching store with unlocking responsibility is found;
its CL counter is copied to the counter of store micro-
op pairs with executing load micro-op and the new CL
is incremented. If the new CL value does not overflow:
the matched store no longer has to unlock the cacheline
(loses that responsibility), and the store micro-op pairs
with executing load micro-op now has that responsi-
bility (must unlock the cacheline). When the counter
overflows, nothing is done, effectively not chaining the
RMW to the previous already running chain.

It is possible that the store micro-op of a cache-locking
RMW faces an already unlocked cacheline as the cache-
locking RMW did not join a lock chain (a threashold was
reached) and the cacheline was already unlocked. This does
not jeopardize the correctness of application as cache locking
for non-atomic RMWs is considered a performance optimiza-
tion and can be revoked at anytime.

FE. Memory overhead

Cache locking requires a 13-bit timer, and lock chaining
needs augmenting each SQ entry with a 3-bit counter (con-
sidering the best-performance option with lock-chaining of 8

TABLE I: Gem5 simulated parameters

[Component [Parameter |

8 cores out-of-order Alderlake-like; Fetch, De-
code, Rename width: 8, 6, 6 instructions per
cycle; Issue, Commit width: 12, 8 instructions
per cycle; ROB: 512 micro-operations; LQ, SQ:
192, 114 entries; RAS: 64 entries; Branch predic-
tor: L-TAGE [29]]; Memory-dependency predictor:
StoreSet [7]]; Processor-prefetch: At-commit store
prefetch [30]

Instructions: 32KB, 8-way, l-cycle hit latency;
Data: 48KB, 12-way, 4-cycle hit latency, stride
prefetcher [4].

IMB, 16-way, 4-cycle tag and 10 cycle data la-

Core

Private L1 Cache

Private L2 Cache

tency.

L3 Cache 4MB, 16-way, 5-cycles tag and 45-cycle data la-
tency.

Memory 80ns access time.

Coherence Three-level MESI protocol interconnected with a

crossbar [2].

RMWs — see Section [VII-B). Overall, for an Alderlake-like
core implementing a 114-entry SQ, the memory overhead is
only 45 bytes.

VI. METHODOLOGY

We simulate a multi-core processor using the gemS5-20
full-system simulator. The processor and memory parameters,
trying to resemble an Intel Alderlake core, are shown in
Table [I ALU execution latencies are modeled as measured
on real hardware by Fog [10]. We integrated a McPAT [19]]
with Xi et al. [31] bug fixes into gem5 to measure energy
consumption using a process technology of 22nm (minimum
available in McPAT), a voltage of 0.6V, and the default clock
gating scheme for the core. We do not measure energy for the
memory controller or interconnection network.

We run parallel applications from different benchmark suits:
SPLASH-3 [27]], PARSEC 3.0 [6], PHOENIX-2.0 [25] (all
with simmedium inputs), and write-intensive workloads [12],
[18]. We omit four applications from PARSEC and one from
PHOENIX that did not finish execution on the baseline gem5
simulator when running with 8 cores. We focus our evaluation
on those applications that bear noticeable contention between
their non-atomic RMWs (i.e., face at least one pipeline flush
initiated by invalidating RMWSs per million instructions), but
also report the performance of our proposal for all applications
(RMW-contention-intensive and less contended). We pinned
the threads to the cores to prevent the scheduler from gener-
ating an unbalanced load and report statistics for the region
of interest (ROI), that is, code after initialization and before
output. We account for variability by running applications
20 times starting at a different architectural state. We then
compute the average of all simulations.

VII. EVALUATION

This section examines the performance improvement and
energy savings achieved by CLAU by mitigating the draw-
backs of contention in a multi-core processor. In all the ex-

TABLE II: Number of RMWs per one thousand instructions

[Benchmark [Value [[Benchmark | Value |
histogram 183.44 pca 1.05
linear_regression | 1.26 barnes 9.28
radiosity 1.65 concurrent_queue | 7.16
streamcluster 0.28 freqmine 31.29
matrix_multiply 1.21 TATP 6.86

[mbaseline BLC1 @LC2 mLC4
1.04

DLC8 TLCl6 mLC32 mLC64]

1.00

Norm. Exec. Time
o o
[{e] [{=]
N (o>}

Fig. 4: Sensitivity analysis: Lock chaining

periments, the baseline uses non-atomic RMWs without cache
locking, and normalized results are against this configuration.

A. Frequency of RMWs

First, we need to measure the number of RMWs that appear
in our evaluated applications. When a compiler is configured
to generate optimized code (e.g., -O3 in GCC), non-atomic
memory updates will consistently use RMW instructions.
Table || reports the frequency of the appearance of RMWs
(per one thousand instructions) in contented applications. This
case study indicates that the number of in-flight RMWs can
be substantial in some applications like histogram.

B. Sensitivity analysis

Cache locking and lock chaining of RMWs rely on some
parameters that impact the performance of CLAU. Therefore, a
sensitivity analysis, for each of these parameters, is needed to
achieve the optimal performance. We tested that each parame-
ter is orthogonal and therefore can be examined independently.

Lock chaining. We begin by studying the optimal length
for chaining the lock. The longer the lock chaining goes, the
more cache-locking RMWs can execute consecutively without
releasing the lock. However, if some of the cache-locking
RMWs belong to a mispredicted speculative path that faces a
squash, other cores have waited unnecessarily, causing a load
imbalance. Therefore, a cap is needed to moderate this trade-
off. Based on our analysis (Fig. @), chaining eight consecutive
cache-locking RMWs achieves the best performance improve-
ment for the contented applications. The only exception is
matrix_multiply; it suffers when increasing the chain length,
probably because the memory updates are in the speculative
path of the pipeline, facing mispredictions and hence causing
a slight load imbalance.

Timeout threshold. The second parameter, timeout thresh-
old, decides when to withdraw the locked cachelines to prevent

=
o
=

—e— histogram

—+= linear_regression
— = radiosity

== streamcluster

Ly
o
=)

matrix_multiply

Norm. Exec. Time
o
©
(o))

0.92 bea
—+=barnes
0.88 - X concurrent_queue
273288888 8 |~ freqmine
_ — O O O O
3 = 0 S |—= TATP
o
Time Threshold (Cycles) GeoMean
Fig. 5: Sensitivity analysis: Timeout threshold
mbaseline mSkip @Lock
g 1.04 i
— 1
= |
S 1.00 '
|
ai 0.96 i
= 1
5 0.92 !
S . N PSR &Q, &
D NP
& N TS Y
SR & .*_9\ 7 <y
&7 & S
N4 &

Fig. 6: Sensitivity analysis: Store-to-load forwarding

deadlocks. This parameter depends on the size of the network
(including the number of cores) and the contention within
applications. Fig. [5] shows that choosing a tiny value (1 cycle)
impairs the benefit of cache locking as invalidations will be
stalled only for a very short time; therefore having a great
chance to invalidate or steal the write permission of cache-
locking RMWs. Nevertheless, linear_regression is an excep-
tion. This comes from having small idle time in cores when
setting the threshold to 1 cycle. However, still by increasing
the threshold the active cycles of cores, in this application,
will reduce compared to 1 cycle. On the other hand, a large
number (like 10-kilo cycles) not only increases the memory
overhead of hardware implementation but also unnecessarily
postpones avoiding a potential deadlock. Hence, a mid-point of
5-kilo cycles is the optimal value for an Alderlake-like core.
Similar to the lock chaining analysis, matrix_multiply gains
better performance when timeout threshold has smaller value.
This is because most of its RMWs belong to the mispredicted
speculative path, and therefore relinquishing the lock earlier
than facing the squash is beneficial for the application as
letting other cores progress earlier.

Cache locking on store-to-load forwarding. The last pa-
rameter is to decide whether a store-to-load forwarded cache-
locking RMW should perform or skip cache locking when
it finds the cacheline in L1D with exclusive permission (the
prerequisite needed [[V-B). In Fig. [f] we observe that a store-
to-load forwarded cache-locking RMW benefits in skipping

< 0O © o N
—
10 - AN M ©o 10
b4 —
—_
2@ 8 ng 8
32 22 g
== 6 s =
o> o =
£4 4 5 4
T 5 »
g2 2 &2
0 0
A (%]
ES2g>8¢gsen ES2g 238y e
s2zH5oaca=kE s2zB8aca=k
52835538 E 53885 §3EL
S 25T 3 <2 5ghk g5 o3s <5 ghk
28 E E = s 2 o8 EE e 2
=27 g | I =2 ag | "
[-1 = | 9 X L
=52 = 5 E =
§ %8 3 § %% 3
2 = 2 e
£ E 5] £ S 5]
- o - o

(a) Pipeline flushes by invalidation (b) Store Miss

Fig. 7: CLAU (2nd bar) reduces the drawbacks of contention
in baseline (1st bar)

the cache locking even in finding the cacheline with write
permission in L1D. In this figure, the second bar (Skip) shows
the case that forwarded cache-locking RMW will skip cache
locking. On the contrary, the third bar (Lock) shows the
normalized execution time of the case that forwarded cache-
locking RMW will perform cache locking which faces a slow-
down. In many applications like histogram, matrix_multiply,
fregmine, the store-to-load forwarded RMWs belong to the
speculative path, which will not be committed, and therefore
skipping cache locking will be beneficial in performance as it
prevents load imbalance. The only exception is barnes, where
forwarded RMWs belong to the non-speculative path.

C. Reducing the drawbacks of contention

Fig. shows that cache-locking RMWs can reduce the
pipeline flushes induced by invalidations enabling RMWs to
complete their execution before relinquishing the cacheline
to other cores. This reduction in TATP moves from 62 to
practically O flushes per million instructions, and the maximum
flush ratio reaches 3 when using CLAU (in pca).

Fig. [7b] shows that cache-locking RMWs also reduce store
miss to a negligible value by preventing losing the write
permission due to contention (invalidation or downgrade mes-
sage) or replacement policy eviction. The only exception in
store misses is fregmine which faced an increase compared
to baseline. This is because fregmine shows lock locality
and therefore benefits from large lock chaining like (LC=32
- see [VII-B). In this experiment, the lock chaining was
limited to 8, and consequently, breaking lock chaining makes
some RMWs susceptible to losing write permission again.
Nevertheless, considering both aspects (pipeline flushes and
store miss), this application still is harmed less by contention
when using cache locking.

D. Performance & Energy improvement

The sensitivity analysis identified the optimal parameters for
the three discussed variables as follows: limiting lock chaining
to eight, setting the timeout threshold to 5K cycles, and
skipping cache locking if a cache-locking RMW obtains data

o 1.02

£
i 1.00
< 0.98
X H
w0.96
€ H
< 0.94 i
o H
zZ H
0.92 :
ES252883 ¢80 5
s 2B 8ac 2=k
o 6 © 3 = 5 2 L S
2 2 T o 3 o S g k-3
2 S E E[2 & (05
=58 x S
< » = =1
£ £ £
- o

Fig. 8: CLAU (2nd bar) performance improvement with re-
spect to baseline (1st bar)

| oStatic mDynamic |

écl.oo
$;§_0.80
c
w g 0.60
. S
£ 2040
o O
= 0 0.20
0.00
ESzoxggeee s
S5 3 9 . 2S£ 2= L3}
> % © 5 = 5 2 ELs
2 ¢35 © 3 o 9 gkF 35
2 ¢ € E = 2 @
= o gxl S ¥ (O]
ol e X £
T Y= S
[<5] © 8
£ £ 5]
o

Fig. 9: CLAU (2nd bar) energy improvements with respect to
baseline (1st bar)

through store-to-load forwarding. Using this configuration, we
measured the effect of CLAU on the selected benchmarks.
Fig. [8]shows an average improvement of 2.05%, for contended
applications, over the baseline without any cache locking done
by RMW instructions. The maximum performance gains are
achieved by linear regression (5.36%). The only application
faces overhead with lock chaining is matrix_multiply, while
still benefits from cache-locking RMWs. When considering
less contended applications from all evaluated benchmark
suites, CLAU improves performance of string_match by
1.59%, while fft and lu_ncb face performance overhead of
2.65%, and 1.79% respectively. This slowdown comes from
increased idle time of cores when using CLAU. However,
still active cycles of cores are similar between CLAU and the
baseline, and CLAU can reduce the squashed rate of RMWs
even if it is negligible (less contention). Other less contended
applications are unaffected by CLAU. Moreover, in Fig. 0]
we observe that the total energy used by the applications
is reduced by 2.06% on average (and 5.8% maximum in
linear_regression similar to performance trend). This reduction
comes mainly from static energy, which is directly related
to the reduction in execution time. A smaller fraction comes
from dynamic energy, attributed to savings from reduced re-
execution and squashes. All this considering the small area
overhead required by CLAU (45 bytes).

VIII. RELATED WORK

Mitigating false sharing. Several proposals try to reduce
false sharing as a subtle performance bug of an applica-
tion [8], [15], [17], [20]. Our paper differs from these pro-
posals in some aspects. First, we try to improve the perfor-
mance of non-atomic RMWs by reducing their squash rate
not only in the case of false sharing but also in the case
of true-sharing. Moreover, our paper prevents squashing non-
atomic RMWs due to the cache replacement policy in local
caches. Second, we propose a transparent hardware solution
without compiler/programmer intervention. Third, some false
sharing mitigation techniques in related works impose mem-
ory overheads relative to the application size. However, our
proposal is a pure hardware modification with a cost-efficient
implementation independent of the application. Finally, our
proposal complies with the x86-TSO memory consistency
model and does not alter the cache coherence protocol which
might have jeopardized the correctness of the application (a
possible scenario in Ghostwriter [15] where for some period
a cacheline cannot receive any coherence messages; this is
different than stalling an invalidation as when CLAU locks a
cacheline guarantees that it will not be updated by any other
cores).

Load-load reordering and preventing memory consis-
tency violation. Several proposals allow load-load reordering
while preventing memory consistency violation (MCV) in
TSO memory model. Writers Block [26], stop invalidation
messages while loads are re-ordered, thus avoiding squashes,
and allowing loads to commit out-of-order. On the other hand,
Zhao et al. present Pinned loads [32], a secure-wise technique
that protects loads against MCV by pinning (locking) cache-
lines that are being loaded until the load is guaranteed to be
MCV-free. In contrast, our proposal targets one specific kind
of load (part of RMW instructions), and yet mitigating false
sharing for them yields reasonable performance improvement.
Also, CLAU provides a trade-off between lock locality and
thread level parallelism with a simple lock chaining mecha-
nism without jeopardizing correctness (compared to Writers
Block [26] that sends uncachable copy of a cacheline to other
cores while it is locked in the local core), nor changing the
coherence protocol (including directory) opposed to Pinned
loads [32]. Lastly, CLAU avoids any possible deadlocks with-
out limiting the execution of RMWs while Pinned loads [32]]
requires to guarantee enough SB entries for pending stores
ahead of a load before executing the load and lock its
cacheline.

Efficient implementation of atomic RMWs. Free atomics
is a fence-free implementation of atomic RMWs that enables
out-of-order optimizations (e.g., speculative execution, store-
to-load forwarding) for atomic RMWs [3[]. However, the
following highlights the main differences between this work
and the free atomics proposal: 1. store-to-load forwarding is
an always built-on feature for non-atomic RMWs that is being
kept while transforming them to cache-locking RMWs without
facing any deadlock or livelock. However, atomic RMWs

cannot have store-to-load forwarding in baseline implemen-
tation [14] unless implemented as explained in [3]. 2. free-
atomics relies on flushing the pipeline to avoid deadlock, but
in our proposal, cache-locking RMWs can be freely reverted
to baseline implementation (i.e., without cache locking) to
prevent any possible deadlock. Therefore, this solution does
not impose any performance overhead. 3. even free atomics
implementation has some consistency restrictions such as not
being allowed to commit until the store buffer is empty.
However, cache-locking RMWs can commit freely as before
this transformation without having concern regarding memory
consistency or any possible deadlock.

IX. CONCLUSION

Non-atomic Read-Modify-Write instructions are commonly
used in DRF regions by CISC architectures to produce more
efficient and shorter code. RMW instructions have the ad-
vantage of requesting the data with write permissions when
reading it, reducing the cost of the store operation as the data
should be found with appropriate permissions in L1D. This
advantage does not reach full performance if the cacheline is
highly contended, as other cores may invalidate the cacheline
to perform their own RMW operation.

This paper has proposed CLAU, a micro-architectural mech-
anism that enables non-atomic RMWs to fetch the cacheline
locking it, thus preventing other cores from “stealing” the
cacheline while allowing cache-locking RMWs to run concur-
rently with other instructions in the same core. Our proposal
enables concurrent hardware cache locking for multiple non-
atomic RMWs while guaranteeing deadlock freedom and
no programmer/compiler intervention. We also propose lock
chaining, a mechanism to allow multiple consecutive memory
updates to the same cacheline up to a predefined maximum
(to prevent starvation and load imbalance).

CLAU drastically reduces the number of squashes caused
by remote cores and significantly increases the hit ratio of the
store micro-operation. In our simulation infrastructure, using
parallel workloads, this change makes all the pipeline flushes
due to the invalidation of RMWs vanish (e.g., from 62 to 0).
As a result, we gain performance improvement up to 5.36%
(2.05% on average) with a total overhead of just 45 bytes per
core.

REFERENCES

[1] S. V. Adve and H.-J. Boehm, “Memory models: A case for rethinking
parallel languages and hardware,” Communications of the ACM, vol. 53,
no. 8, pp. 90-101, Aug. 2010.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Apr. 2009,
pp. 33-42.

[3] A. Asgharzadeh, J. M. Cebrian, A. Perais, S. Kaxiras, and A. Ros, “Free
atomics: hardware atomic operations without fences,” in 49th Int’l Symp.
on Computer Architecture (ISCA), Jun. 2022, pp. 14-26.

[4] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors, 1st ed. Cambridge University Press, 2009.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applications,”
ACM Sigplan Notices, vol. 35, no. 11, pp. 117-128, 2000.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72-81.

G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Int’l Symp. on Computer Architecture (ISCA), Jun.
1998, pp. 142-153.

C. DeLozier, A. Eizenberg, S. Hu, G. Pokam, and J. Devietti, “TMI:
thread memory isolation for false sharing repair,” in 50th Int’l Symp. on
Microarchitecture (MICRO), Oct. 2017, pp. 639-650.

E. W. Dijkstra, “Hierarchical ordering of sequential processes,” Acta
Informatica, vol. 1, pp. 115-138, 1971.

A. Fog, “The Microarchitecture of Intel, AMD and VIA CPUs: An
Optimization Guide for Assembly Programmers and Compiler Makers,”
2020, Available at https://www.agner.org/optimize/microarchitecture.
pdf.

K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in 20th Int’l
Conf. on Parallel Processing (ICPP), Aug. 1991, pp. 355-364.

V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in 39th
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2018, pp. 46-61.

E. J. Gémez-Hernandez, J. M. Cebrian, J. R. T. Gil, S. Kaxiras, and
A. Ros, “Efficient, distributed, and non-speculative multi-address atomic
operations,” in 54th Int’l Symp. on Microarchitecture (MICRO), Oct.
2021, pp. 337-349.

Intel, “Intel® 64 and ia-32 architectures software developer’s manual,”
www.intel.com, Mar. 2024.

H. Kao, J. S. Miguel, and N. D. E. Jerger, “Ghostwriter: A cache
coherence protocol for error-tolerant applications,” in ICPP Workshops
2021: 50th International Conference on Parallel Processing, Aug. 2021,
pp. 12:1-12:10.

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon,
“Implementing a cache consistency protocol,” in 12th Int’l Symp. on
Computer Architecture (ISCA), Washington, DC, USA, Jun. 1985, p.
276-283.

T. A. Khan, Y. Zhao, G. Pokam, B. Mozafari, and B. Kasikci, “Huron:
hybrid false sharing detection and repair,” in 40th Conf. on Programming
Language Design and Implementation (PLDI), Jun. 2019, pp. 453-468.
A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
44th Int’l Symp. on Computer Architecture (ISCA), Jun. 2017, pp. 481—
493.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in 42nd Int’l
Symp. on Microarchitecture (MICRO), Dec. 2009, pp. 469-480.

T. Liu and E. D. Berger, “SHERIFF: precise detection and automatic
mitigation of false sharing,” in 26th ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), Oct.
2011, pp. 3-18.

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Ko-
dama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Miick, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. OI-
son, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, M. D. S. Boris Shingarov, T. Ta, R. Thakur,
G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang,
N. Wehn, C. Weis, D. A. Wood, H. Yoon, and Eder F. Zulian, “The gem5
simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152, 2020.

V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer
on Memory Consistency and Cache Coherence, Second Edition, ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2020.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition, 5th ed., ser. The Morgan Kaufmann Series in Computer

[24]

(25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

Architecture and Design.
2013.

B. Rajaram, V. Nagarajan, S. Sarkar, and M. Elver, “Fast rmws for
tso: Semantics and implementation,” in 34th Conf. on Programming
Language Design and Implementation (PLDI), Jun. 2013, pp. 61-72.
C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and multiprocessor
systems,” in 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), Feb. 2007, pp. 13-24.

A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-speculative
load-load reordering in tso,” in 44th Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2017, pp. 187-200.

C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr. 2016, pp. 101-111.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89-97, Jul. 2010.
A. Seznec, “The L-TAGE branch predictor,” The Journal of Instruction-
Level Parallelism, vol. 9, pp. 1-13, May 2007.

T.-F. Tsuei and W. Yamamoto, “Queuing simulation model for multi-
processor systems,” IEEE Computer, vol. 36, no. 2, pp. 58-64, Feb.
2003.

S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in 21st Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb. 2015, pp. 577-589.

Z. N. Zhao, H. Ji, A. Morrison, D. Marinov, and J. Torrellas, “Pinned
loads: Taming speculative loads in secure processors,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
314-328. [Online]. Available: https://doi.org/10.1145/3503222.3507724

Oxford, England: Morgan Kaufmann, Sep.

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
www.intel.com
https://doi.org/10.1145/3503222.3507724

	Introduction
	Background
	Motivation
	CLAU: Cache Locking for All Updates
	Cache-Locking RMWs
	Lock-Chaining RMWs

	An Efficient Hardware Implementation
	Cache-Locking RMWs
	Tracking and Handling Locked Cachelines
	Watchdog Mechanism
	Handling local squashes and re-execution
	Lock-Chaining RMWs
	Memory overhead

	Methodology
	Evaluation
	Frequency of RMWs
	Sensitivity analysis
	Reducing the drawbacks of contention
	Performance & Energy improvement

	Related work
	Conclusion
	References

