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Abstract
The cornerstone for the performance evaluation of com-

puter systems is the benchmark suite. Among the many
benchmark suites used in high-performance computing and
multicore research, Splash-2 has been instrumental in ad-
vancing knowledge for both academia and industry. Pub-
lished in 1995 and with over 5276 citations and counting, this
benchmark suite is still in use to evaluate novel architectural
proposals. Recently, the Splash-3 suite eliminates important
performance bugs, data races, and improper synchronization
that plagued Splash-2 benchmarks after the formal definition
of the C memory model.

However, keeping up with architectural changes while
maintaining the same workloads and algorithms (for com-
parative purposes) is a real challenge. Benchmark suites can
misrepresent the performance characteristics of a computer
system if they do not reflect the available features of the
hardware and architects may end up overestimating the
impact of proposed techniques or underestimating others.

In this work we introduce a revised version of Splash-3,
designated Splash-4, that introduces modern programming
techniques to improve scalability on contemporary hardware.
We then characterize Splash-3 and Splash-4 in a state-of-
the-art simulated architecture, Intel’s Ice Lake with gem5-20
simulator, as well as a real contemporary hardware processor
(AMD’s EPYC 7002 series). Our evaluation shows that
for a 64-thread execution Splash-4 reduces the normalized
execution time by an average of 52% and 34% for AMD’s
EPYC and Intel’s Ice Lake, respectively.

1. Introduction
It is well established that the standard method to conduct

scientific experiments in computer science is benchmarking.
Computer architects decide on a selection of benchmarks,
which are a representation of applications of interest. These
benchmarks are studied in detail to obtain a generalized
conclusion that can be then applied to real computer systems.
It is crucial that the selected workloads are general enough
to cover a wide range of software applications, otherwise ob-
tained results will only be of very limited validity. Examples
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of commonly used benchmark suites include:1 Splash-2 [53]
(5291), MiBench [28] (4546), Parsec [8] (4219), Rodinia [16]
(3211), Linpack [19] (112), Parboil [50] (809), SHOC [18]
(757) and PBBS [48] (227).

Splash-2 was the first major parallel benchmark suite.
The main purpose of Splash-2 was to demonstrate shared-
memory scalability. Indeed, under the evaluation techniques
prevailing at the time (e.g., under a perfect memory system),
this suite showed near-linear scalability in most of the
benchmarks for up to 64 cores [53]. Its existence proved
to be instrumental in the development of shared-memory
multiprocessors. Subsequent updates, such as Splash-2X2,
fixed minor coding errors, updating it to the standards of the
time [57]. This revision also introduced sizeable inputs that
improved scalability on increasingly large systems and non-
idealized simulators. However, Splash-2 shows unexpected
behavior when used within contemporary compilers and
hardware. Indeed, Splash-2 contains data races that introduce
undefined behavior under the current C standard, leading to
both logic and performance bugs.

A recent update, Splash-3 [46], exposes these data races
and performance bugs. Their solution is to improve bench-
mark synchronization to resolve these issues. According
to their own performance analysis done using GEMS [39],
most benchmarks reach a speedup between 16× to 47×
in a 64-core in-order multicore. Conversely, according to
our own measurements using gem5-20 [37] with Intel Ice
Lake-like out-of-order cores, the same Splash-3 benchmarks
exhaust their scalability (i.e., show no further performance
improvement) between 16 and 32 cores, with an average
speedup of 2.3× for 64 cores. Finally, and also according
to our own measurements on real hardware (64-Core AMD
EPYC 7702P), most Splash-3 applications stop scaling when
using between 4 and 16 cores, with an average speedup of
4.7× for 64 cores.

The main scalability problem for Splash-2 and Splash-3
is that benchmarks are crafted using outdated programming
techniques. Atomic operations are now prevalent in many
programs, due to their wide support in both programming
languages, e.g., C [35], C++ [36], Java [52], and ISAs, e.g.,
x86 [34], IBM Power [33], ARMv8 [4] and RISC-V [32, 51].
Today, high-level language semantics directly invoke low-
level hardware atomic operations, but this was not the case
at the time when Splash-2 was created. Splash-4 updates
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Splash-3 synchronization strategies to match contemporary
programming and architectural features, making use of lock-
free constructs whenever possible [27]. The new suite is
then characterized on an Intel Ice Lake-like processor using
gem5-20, as well as a contemporary real hardware processor,
a 64-Core AMD EPYC 7702P. We analyze performance,
scalability, synchronization overhead, and bottlenecks for the
evaluated platform. Overall, Splash-4 improves the speedup
over the corresponding Splash-3 applications by up to 9× on
the 7702P processor, and up to 4× in the gem5-20 simulated
Ice Lake processor.

2. Splash-4 optimizations
Splash-3 applications use a combination of locks (mutual

exclusion), conditional variables (signal and wait), and barri-
ers (wait for all) to synchronize between the different threads.
These constructs introduce overheads in the application,
especially when contention arises [12]. Previous works
already noticed that the default input sizes of the Splash
benchmark suite limit the scalability of some applications [7,
42]. Indeed, the computation between synchronization points
is not substantially longer compared to the time spent in
the synchronization and suggests using larger datasets to
balance the load. However, using larger datasets has the
effect of increasing the execution time, and that is a problem
when using simulation infrastructures. Splash-4 takes a
different approach, replacing high-overhead synchronization
operations with lightweight alternatives. This translates into
a performance improvement by expanding the architectural
features that the benchmarks can exercise. More specifically,
critical sections guarded by locks are replaced by lock-free
constructs, while barriers are reinstated by a lightweight
variant optimized for short waits.

The goal is to replace all possible critical sections
with atomic operations or other lock-free constructs. The
initial target are critical sections that modify a single shared
variable. These critical sections can be easily replaced by an
atomic operation. Then, critical sections that access a few
shared variables are analyzed to be replaced by a lock-free
equivalent.

2.1. Lock-Free and Atomic Operations
Modern ISAs typically provide a basic set of atomic

operations that offer both atomicity and synchronization.
These instructions can be used to negotiate mutual exclu-
sion among threads and are currently supported by many
programming languages. Examples include, “locked atomic
operations” used in x86 and “atomic memory operations”, or
AMO instructions, used in IBM Power, ARMv8, and RISC-V.
This basic set consists of atomic loads and stores, atomic
read–modify–write (RMW) operations (such as fetch–and–
add), and some atomic comparisons and exchange operations
(such as compare–and–swap, CAS). Atomics instructions set
the foundation to create more complex lock-free operations.

For example, CAS allows implementing codes that read
a value, update it locally using non-atomic operations, and
then write it to shared memory while checking that there

is no conflict. However, and unlike other atomic operations,
CAS can fail (if the old value does not match) and might
need to retry multiple times. For this reason, it is common
to use the CAS operation in a loop [24], as seen in Listing 1.
For simplicity, this is also referred to as a “CAS construct”.

Typical hardware RMW atomics are only available for
integer types. CAS on the other hand is type-agnostic, so
it can be used to implement RMW operations for more
complex underlying types. Using the CAS construct, a
FETCH_AND_ADD_DOUBLE construct can be imple-
mented, which is a RMW fetch–and–add operation for
double-precision floating-point numbers (Listing 2) [24].
Specifically, the old value is read into a register with an
atomic load (LOAD) that enforces sequential consistency
(default behaviour when not indicating the memory order).
Then the new value is calculated from the read one. The
CAExch instruction performs checks of the variable atomi-
cally, thus reloading the old value when performing the check,
and returning a boolean indicating if the check succeeded.
The CAExch instruction can be exchanged by the CAS
instruction as shown in Listing 1 (the same principle can be
applied to the rest of the listings on the benchmarks). This
implementation with atomic accesses prevents “benign” data
races that could affect correctness when building binaries
for specific architectures as specified in [10].

1 /* CAExch */
2 var oldValue = LOAD(ptr);
3 var newValue;
4 do {
5 newValue = new;
6 } while (! CAExch(ptr , oldValue , newValue))

;

1 /* CAS */
2 var readValue = LOAD(ptr);
3 var oldValue;
4 var newValue;
5 do {
6 oldValue = readValue;
7 newValue = new;
8 } while (( readValue = CAS(ptr , oldValue ,

newValue)) != oldValue);

Listing 1: While&CAS structure

1 double oldValue = LOAD(ptr);
2 double newValue;
3 do {
4 newValue = oldValue + addition;
5 } while (! CAExch(ptr , oldValue , newValue))

;

Listing 2: FETCH_AND_ADD_DOUBLE operation

2.2. Sense-Reversing Centralized Barrier
For the Splash-3 benchmarks, the execution time between

barriers is fairly short. To minimize the overhead of the
barrier operation, we implement a sense-reversing barrier.
This construct is optimized for short waiting times, except
when oversubscribing threads (Listing 3) [40]. The atomic



store (STORE) enforces a sequentially-consistent ordering
(default behavior when not indicating the memory order).

1 local_sense = !local_sense;
2 if (atomic_fetch_sub (&( count), 1) == 1) {
3 count = threads;
4 STORE(sense , local_sense);
5 } else {
6 do {} while (LOAD(sense) != local_sense)

;
7 }

Listing 3: Sense-reversing barrier

The standard glibc pthread barrier implementation uses a
mutex lock to atomically update the thread count as threads
arrive to the barrier [26]. This is replaced with a fetch–
and–decrement atomic operation. By doing so, threads are
actively looking for the barrier completion (spinning) instead
of sleeping. Therefore, overall time spent in the barrier is
reduced, since waking a sleeping thread is a slow operation.

2.3. Splitting Critical Sections
Splash-4 employs lock-free constructs that manage a

single address and naturally correspond to critical sections
that modify a single address. Splitting a larger critical section
that modifies more than one address in smaller single-address
critical sections would, therefore, enable the use of lock-
free constructs in more cases. Unfortunately, splitting large
critical sections, is not possible in the general case, because
of implicit atomicity guarantees that may exist deep in the
code regarding the group update of multiple variables—even
when such variables are seemingly independent.

However, we found out that for many Splash-3 critical
sections, (atomic) updates of independent variables are
clumped together in larger critical sections for no apparent
reason. In other words, group atomicity is not required and
neither is assumed anywhere in the code. They surmise
that the original Splash-2 clustered “atomically-independent”
variables in the same critical sections to amortize the high
cost of lock and unlock operations.

3. Per Application Study
For the sake of space we do not show all code changes

in this section. The full benchmark code is however publicly
available 3.

There are multiple synchronization primitives used in
Splash-3 applications, but we are focusing on mutexes and
barriers. Therefore, in this work we omit everything related
to conditional variables, signal/wait, and broadcasts. Most
applications have a single critical section that provides a
sequential and unique ID to each thread. Such a critical
section can be trivially replaced with an atomic fetch–and–
add operation, and should not affect the performance of the
application in any case.

To increase the number of critical sections that can be
changed while maintaining the correctness of the application,

3. https://github.com/OdnetninI/Splash-4

we define the critical sections that execute between two
barriers as belonging to the same barrier group. Within
barrier groups, the behavior with a lock-free construct must
be equivalent to the original lock-unlock structure, but
accesses in other barrier groups should not be considered
as concurrent. To replace a critical section with a lock-free
structure, the shared variable modified by the critical section
should not conflict with any other critical section that is
not replaced with a compatible lock-free structure inside
the same barrier group. With few exceptions, we are not
changing a critical section belonging to a barrier group if all
other conflicting critical sections of the same barrier group
cannot be changed.

3.1. Barnes
Barnes is a three-dimensional n-body simulation. It

contains 11 critical sections that can be grouped into three
barrier groups. Unfortunately, no critical section can be
easily replaced with atomic operations.

3.2. Cholesky
Cholesky is a benchmark that performs a blocked sparse

Cholesky factorization. It contains 6 critical sections that
can be grouped into 2 barrier groups. Almost all of these
are dedicated to manual memory management for object
allocation. A critical section (Listing 4) can be replaced with
an equivalent CAExch operation. Once a thread obtains a free
block, it is no longer changed, maintaining the correctness
of the code.

1 /* Lock */
2 LOCK(mem_pool[home]. memoryLock)
3 result = mem_pool[home]. freeBlock[bucket ];
4 if (result)
5 mem_pool[home]. freeBlock[bucket] =

NEXTFREE(result);
6 UNLOCK(mem_pool[home]. memoryLock)

1 /* Lock -free */
2 result = LOAD(mem_pool[home]. freeBlock[

bucket ]);
3 do {
4 if (! result) break;
5 } while (! CAExch(mem_pool[home]. freeBlock[

bucket], result , NEXTFREE(result)));

Listing 4: malloc.c.in 138

3.3. FMM
FMM is a two-dimensional n-body simulation and con-

tains 51 critical sections that can be grouped into eight
barrier groups. The majority of these are used to access
and modify the boxes that FMM uses to split the simulation
space. Due to the nature of the algorithm, in most cases the
critical section covers a single store or load, so it is possible
to simply remove the critical section and replace it with the
equivalent atomic operation. There is one exception to this:
inserting a new box into the grid, which needs to be replaced
with a CAExch operation to ensure that the grid remains
consistent.



3.4. Radiosity

Radiosity performs a light distribution equilibrium com-
putation. It contains 43 critical sections that can be grouped
into three barrier groups. The majority of these critical
sections are too large to be replaced with a single atomic
operation and too complex to find a lock-free equivalent. A
suitable section implements a custom barrier that allows for
work stealing (Listings 5, 6, and 7). To maintain correctness,
all these critical sections have to be changed all together
or not at all. Listings 5 and 6 can be replaced with a
CAExch and an atomic decrement operation respectively,
while Listing 7 can be replaced with an atomic load operation,
as the comparison operation does not need to be part of the
critical section.

1 /* Lock */
2 LOCK(global ->pbar_lock);
3 // Reset the barrier counter if not

initialized
4 if( global ->pbar_count >= n_processors )
5 global ->pbar_count = 0 ;
6
7 // Increment the counter
8 global ->pbar_count ++ ;
9
10 // barrier spin -wait loop
11 long bar_done = !(global ->pbar_count <

n_processors);
12 UNLOCK(global ->pbar_lock);

1 /* Lock -free */
2 long expected = LOAD(global ->pbar_count);
3 long result;
4 do {
5 if( expected >= n_processors ) result =

1;
6 else result = expected + 1;
7 } while(! CAExch(global ->pbar_count ,

expected , result));
8 long bar_done = !( result < n_processors);

Listing 5: taskman.c.in 108

1 /* Lock */
2 LOCK(global ->pbar_lock);
3 global ->pbar_count -- ;
4 UNLOCK(global ->pbar_lock);

1 /* Lock -free */
2 FETCH_AND_SUB(global ->pbar_count , 1);

Listing 6: taskman.c.in 134

1 /* Lock */
2 LOCK(global ->pbar_lock);
3 bar_done = !(global ->pbar_count <

n_processors);
4 UNLOCK(global ->pbar_lock);

1 /* Lock -free */
2 bar_done = !(LOAD(global ->pbar_count) <

n_processors);

Listing 7: taskman.c.in 140

Finally, there is another special critical section that
controls how the work is distributed. This critical section
loads and checks two different shared variables. In this case,
two chained CAExch operations are required to ensure that
both of these values remain consistent (Listing 8).

1 /* Lock */
2 LOCK(tq ->q_lock);
3 if( tq->n_tasks > 0) {
4 if ( tq->top ) {
5 task_found = 1;
6 }
7 UNLOCK(tq->q_lock);
8 break ;
9 }
10 UNLOCK(tq->q_lock);

1 /* Lock -free */
2 int exit;
3 Task *expectedTop = LOAD(tq->top);
4 long expectedNTasks = LOAD(tq->n_tasks);
5 do {
6 exit = 0;
7 if (expectedNTasks <= 0) break;
8 exit = 1;
9 do {
10 task_found = 0;
11 if (! expectedTop) break;
12 task_found = 1;
13 } while (! CAExch(tq->top , expectedTop ,

expectedTop));
14 } while (! CAExch(tq->n_tasks ,

expectedNTasks , expectedNTasks));
15 if (exit) break;

Listing 8: taskman.c.in 533

3.5. Raytrace
Raytrace is a three-dimensional raytracing rendering

application. It contains 11 critical sections that can be
grouped into two barrier groups. Four of these critical
sections are only used for assigning unique IDs to the rays
and can be easily replaced with fetch–and–add operations.
Two other critical sections manage the memory allocation
and cannot be replaced without significantly modifying the
algorithm. Finally, the last critical section manages work
assignment and can be replaced with a CAExch operation
(Listing 9).

3.6. Ocean
Ocean, both the contiguous and non-contiguous ver-

sions, are large-scale ocean movement study applications.
They contain three critical sections that can be grouped
into two barrier groups. Two of these critical sections
are used to accumulate the psibi and psiai variables.
Since atomic fetch–and–add operation with floating point
variables are not typically supported, we rely on our cus-
tom FETCH_AND_ADD_DOUBLE construct, that uses a
CAExch operation (Listings 10 and 11).

Finally, the last critical section gathers all computed
errors and selects the largest one. This functionality is



1 /* Lock */
2 ALOCK(gm->wplock , pid)
3 wpentry = gm->workpool[pid ][0];
4
5 if (! wpentry) {
6 AULOCK(gm->wplock , pid)
7 return (WPS_EMPTY);
8 }
9 gm->workpool[pid ][0] = wpentry ->next;
10 AULOCK(gm->wplock , pid)

1 /* Lock -free */
2 wpentry = LOAD(gm->workpool[pid ][0]);
3 do {
4 if (! wpentry) return WPS_EMPTY;
5 } while (! CAExch(gm->workpool[pid][0],

wpentry , wpentry ->next));

Listing 9: workpool.c.in 152

1 /* Lock */
2 LOCK(locks ->psibilock)
3 global ->psibi = global ->psibi + psibipriv;
4 UNLOCK(locks ->psibilock)

1 /* Lock -free */
2 FETCH_AND_ADD_DOUBLE(global ->psibi ,

psibipriv);

Listing 10: slave1.c.in 508 & 344

1 /* Lock */
2 LOCK(locks ->psiailock)
3 global ->psiai = global ->psiai + psiaipriv;
4 UNLOCK(locks ->psiailock)

1 /* Lock -free */
2 FETCH_AND_ADD_DOUBLE(global ->psiai ,

psiaipriv);

Listing 11: slave2.c.in 857 & 718

implemented on some ISAs by the atomicMin instruction.
Since the x86 ISA does not implement atomicMin we offer
an alternative implementation. As maximum and minimum
establish a global order, atomicMin can be easily imple-
mented as a priority update [47]. Our implementation uses a
slight variation priority update to maintain code uniformity
with the rest of Splash-4 (Listing 12).

1 /* Lock */
2 LOCK(locks ->error_lock)
3 if (local_err > multi ->err_multi) {
4 multi ->err_multi = local_err;
5 }
6 UNLOCK(locks ->error_lock)

1 /* Lock -free */
2 double expected = LOAD(multi ->err_multi);
3 do {
4 if (local_err <= expected) break;
5 } while (! CAExch(multi ->err_multi ,

expected , local_err));

Listing 12: multi.c.in 90

3.7. Volrend
Volrend is a three-dimensional rotating volume rendering

application using ray casting. It contains 16 critical sections
that can be grouped into three barrier groups. Many of these
critical sections are used to establish unique IDs for each
subdivision of the rendering process. The remaining critical
sections manage the sampling size for each region of the
volume to render. All these sections can be simply replaced
by an equivalent atomic RMW (e.g. Listing 13).

1 /* Lock */
2 ALOCK(Global ->QLock ,local_node);
3 work = Global ->Queue[local_node ][0];
4 Global ->Queue[local_node ][0] += 1;
5 AULOCK(Global ->QLock ,local_node);

1 /* Lock -free */
2 work = FETCH_ADD(Global ->Queue[local_node

][0], 1);

Listing 13: adaptive.c.in 182 & 199

3.8. Water
Water-Nsquared and Water-Spatial are force molecular

simulator applications for water molecules. Water-Nsquared
uses an O(n2) algorithm with a predictor and a corrector,
while Water-Spatial establishes a 3D grid to distribute the
molecules between threads with an O(n) algorithm. Water-
Nsquared contains seven critical sections that can be grouped
in three barrier groups and Water-Spatial contains seven
critical sections grouped in seven barrier groups.

3.8.1. Common. Both implementations share four critical
sections that update the global inter/intra-molecular force,
the kinetic energy, and the potential energy. However, as it
happens in Ocean, these variables are floating point, and
thus require the use of custom constructs (e.g., Listings 14).

1 /* Lock */
2 LOCK(gl ->IntrafVirLock);
3 *VIR = *VIR + LVIR; // LVIR /2.0 (Spatial

Interf)
4 UNLOCK(gl->IntrafVirLock);

1 /* Lock -free */
2 FETCH_AND_ADD_DOUBLE(VIR , LVIR);

Listing 14: intraf.c.in 133 & interf.c.in 146 & intraf.c.in 170
& interf.c.in 196

On the other hand, the critical section that updates the
potential energy of the system consists of three fetch–and–
add operations. As discussed in Section 2.3, there are cases
where a critical section can be split into multiple smaller
critical sections while maintaining correctness (Listing 15).

3.8.2. Water-Nsquared Critical Sections. Water-Nsquared
has three critical sections that are not shared with Water-
Spatial. These critical sections are the main part of the
O(n2) algorithm, where all the forces are computed us-
ing a shared structure. However, these critical sections
can also be split into multiple smaller ones, using the
FETCH_AND_ADD_DOUBLE construct (Listing 16).



Application Barriers
Critical Sections Conditionals

Mutex C11 CAExch Wait Signal Broad
St Dyn St Dyn St Dyn St Dyn St Dyn St Dyn St Dyn

Splash-3
Barnes 6 19 10 2140090 0 0 0 0 1 360 0 0 2 23539
Cholesky 4 6 8 95182 0 0 0 0 1 4588 1 20508 0 0
Fft 7 9 1 64 0 0 0 0 0 0 0 0 0 0
Fmm 13 36 38 488126 0 0 0 0 8 1467 1 6207 5 23282
Lu 5 69 1 64 0 0 0 0 0 0 0 0 0 0
Lu-NonContiguous 5 69 1 64 0 0 0 0 0 0 0 0 0 0
Ocean 20 902 4 13312 0 0 0 0 0 0 0 0 0 0
Ocean-NonContiguous 19 872 4 13312 0 0 0 0 0 0 0 0 0 0
Radiosity 5 12 48 3861123 0 0 0 0 0 0 0 0 0 0
Radix 7 17 1 64 0 0 0 0 0 0 0 0 0 0
Raytrace 3 3 8 355184 0 0 0 0 0 0 0 0 0 0
Volrend 15 146 12 311164 0 0 0 0 0 0 0 0 0 0
Water-Nsquared 9 22 8 68672 0 0 0 0 0 0 0 0 0 0
Water-Spatial 9 22 6 1217 0 0 0 0 0 0 0 0 0 0

Splash-4
Barnes 6 19 9 2140056 1 64 0 0 1 352 0 0 2 23539
Cholesky 4 6 6 68979 1 64 1 26238 1 3911 1 20508 0 0
Fft 7 9 0 0 1 64 0 0 0 0 0 0 0 0
Fmm 13 36 26 442838 1 64 1 5 8 1485 1 6207 5 23282
Lu 5 69 0 0 1 64 0 0 0 0 0 0 0 0
Lu-NonContiguous 5 69 0 0 1 64 0 0 0 0 0 0 0 0
Ocean 20 902 0 0 1 64 3 13248 0 0 0 0 0 0
Ocean-NonContiguous 19 872 0 0 1 64 3 13248 0 0 0 0 0 0
Radiosity 5 12 36 3478298 3 50497 3 6394618 0 0 0 0 0 0
Radix 7 17 0 0 1 64 0 0 0 0 0 0 0 0
Raytrace 3 3 2 252498 5 92455 1 8816 0 0 0 0 0 0
Volrend 15 146 1 1536 8 245519 0 0 0 0 0 0 0 0
Water-Nsquared 9 22 0 0 1 64 15 608384 0 0 0 0 0 0
Water-Spatial 9 22 0 0 1 64 6 1280 0 0 0 0 0 0

TABLE 1: 64 cores, default entries, each execution may vary the numbers a bit, numbers obtained with our pin tool. St(atic)
is the number of instances present in the code, while Dyn(amic) is the number of instances executed in runtime.

1 /* Lock */
2 LOCK(gl ->PotengSumLock);
3 *POTA = *POTA + LPOTA;
4 *POTR = *POTR + LPOTR;
5 *PTRF = *PTRF + LPTRF;
6 UNLOCK(gl->PotengSumLock);

1 /* Lock -free */
2 FETCH_AND_ADD_DOUBLE(POTA , LPOTA);
3 FETCH_AND_ADD_DOUBLE(POTR , LPOTR);
4 FETCH_AND_ADD_DOUBLE(PTRF , LPTRF);

Listing 15: poteng.c.in 159 & poteng.c.in 253

4. Benchmark Overview

In order to understand how Splash-4 code changes affect
the applications at runtime, Table 1 shows all the synchro-
nization primitives executed (instances of instructions) for
Splash 3 and 4 when running 64 threads. In addition, we
also show static (critical sections in the code) breakdown,
since these are the ones with major code changes (barriers
are simply replaced by a sense-reversing version). Critical
sections are classified into three categories, depending on
how they are implemented: mutex lock, C11 atomics, or
Lock-Free constructs (CAExch). We can see that, overall,
total synchronization primitive calls remain similar between
the two suites, but, as we will see later, the total time

1 /* Lock */
2 ALOCK(gl->MolLock , mol % MAXLCKS);
3 for ( dir = XDIR; dir <= ZDIR; dir++) {
4 temp_p = VAR[mol].F[DEST][dir];
5 temp_p[H1] += PFORCES[ProcID ][mol][dir][

H1];
6 temp_p[O] += PFORCES[ProcID ][mol][dir][

O];
7 temp_p[H2] += PFORCES[ProcID ][mol][dir][

H2];
8 }
9 AULOCK(gl->MolLock , mol % MAXLCKS);

1 /* Lock -free */
2 for ( dir = XDIR; dir <= ZDIR; dir++) {
3 FETCH_AND_ADD_DOUBLE (&(VAR[mol].F[DEST][

dir][H1]), PFORCES[ProcID ][mol][dir][H1
]);

4 FETCH_AND_ADD_DOUBLE (&(VAR[mol].F[DEST][
dir][O]), PFORCES[ProcID ][mol][dir][O])
;

5 FETCH_AND_ADD_DOUBLE (&(VAR[mol].F[DEST][
dir][H2]), PFORCES[ProcID ][mol][dir][H2
]);

6 }

Listing 16: interf.c.in 156 & interf.c.in 167 & interf.c.in 179



spent waiting in each synchronization primitive call drops
drastically for Splash-4.

5. Methodology
The main purpose of Splash-4 is to serve as an evaluation

tool for novel architectural proposals. This is why the present
paper performs a characterization in both simulated and
real hardware. However, the objective is not to measure the
accuracy of the simulator against the real hardware, but to
measure how effective the changes introduced in Splash-4
are.

5.1. Evaluation Environment
The selected hardware is AMD Epyc 7702P CPU [2] with

64 cores @ 2GHz, 32KB L1-D and L1-I, 512KB L2, and
16MB L3 caches. Hyper-threading is enabled, but we only
run one thread on each physical core. It runs Ubuntu 18.04
with Linux kernel 5.4.0. The selected simulator is gem5-
20 [37] running on full-system mode. We mimic an Intel’s Ice
Lake processor [1] running at 2GHz. The simulated system
runs Ubuntu 16.04 with Linux kernel 4.9.4. The processor
parameters are shown in Table 2. We use Ruby and Garnet [3]
to model memory hierarchy. The execution and issue latency
is modeled as measured on real hardware by Fog [23]. Each
application is run ten times, and then a trimmed mean of
30% is computed. Measurements account for the region of
interest (ROI), that is, the parallel region, after initialization
and before screen output. Prints in this code section have
been removed. In addition, gem5-20 measurements reset
stats within the ROI after a warm-up period, as suggested
by the original Splash-2 developers, to minimize variability
between runs.

Processor Ice Lake EPYC 7702P
Fetch width 5 32 Bytes
Decode width 5 4
Rename width 5 6
Issue width 10 6
Commit width 10 8
Instruction queue 160 -
Reorder buffer 352 224
Load queue 128 44
Store queue 72 48
Integer Registers 180 180
Float Registers 180 160
Load Units 2 2
Store Units 1 3
Integer ALUs 1 4
Combined
FP/Int ALUs 3 -

Memory Subsystem (per core)
L1-I 32K 8w 32K 8w
L1-D 48K 12w 32K 8w
L2 512K 8w 512K 8w
Shared L3 2M 16w 4M
Directory 32708 sets 16 ways -
Memory latency 80ns N/A

Network
Topology Crossbar Inf. Fabric 2

TABLE 2: gem5 System Configuration

5.2. Application Inputs
The inputs used in this paper are shown in Table 3

along with the memory footprint for 1 and 64 cores. These
inputs, commonly known as simsmall, are the same for both
platforms (real hardware and simulator). Valgrind is used to
measure the memory footprint.

Application Input Memory Footprint
(1/64 cores)

Barnes < inputs/n16384-p# 10MB/10MB
Cholesky -p# < inputs/tk15.O 16MB/40MB
FFT -p# -m16 6MB/8MB
FMM < inputs/input.#.16384 12MB/42MB
LU -p# -n512 4MB/5MB
LU-NonContiguous -p# -n512 4MB/5MB
Ocean -p# -n258 17MB/20MB
Ocean-NonContiguous -p# -n258 46MB/47MB

Radiosity -p # -ae 5000 -bf 0.1 219MB/219MB-en 0.05 -room -batch
Radix -p# -n1048576 19MB/25MB
Raytrace -p# -m64 inputs/car.env 58MB/59MB
Volrend # inputs/head 8 32MB/33MB
Water-Nsquared < inputs/n512-p# 3MB/8MB
Water-Spatial < inputs/n512-p# 3MB/4MB

TABLE 3: Application Inputs (# −→ Number of cores)

6. Evaluation
This section shows the performance characterization of

the Splash-4 benchmark suite. We also perform a scalability
analysis, analyzing how much time is spent in synchroniza-
tion primitives. Finally, we show a breakdown of core active
running time, based on performance counter information, to
pinpoint possible bottlenecks.

6.1. Performance Effects of Synchronization Over-
heads

Our evaluation starts by showing how the different code
upgrades from Splash-4 affect application performance. Fig. 1
shows the individual effects of upgrading to sense-reversing
barriers (labeled Barrier), using atomic-based lock-free
operations/constructs (labeled Atomics) and a combination
of both (labeled Splash-4) on a 64-thread execution in the
AMD 7702P processor. Barrier upgrades reduce execution
time by 40% on average. Atomic constructs in isolation
reduce execution time by 11% on average, although the
Atomic implementation performs marginally worse than
pthreads under low contention. In general, the impact of the
optimizations on execution time depends on how heavily each
application relies on locks/barriers and their synchronization
overhead (Fig. 2). For example, FFT only has one lock that
protects the thread id (Table 1), and is only executed once
and without contention, so the impact of Atomic optimization
in isolation is minimal. The combination of both techniques
provides a significant 52% reduction in execution time.
Execution time results show the benefits of Splash-4, but, in
order to be more thorough, the next step is to break down
the synchronization overheads of both benchmark suites.
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Figure 1: Execution time when upgrading Splash-3 barriers, atomics and both -Splash-4- (64-threads on AMD Epyc 7702P)
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Figure 2: Synchronization overhead breakdown. Each thread count includes two bars, one for Splash-3 and one for Splash-4
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Figure 3: Splash-3 vs Splash-4 Scalability on AMD Epyc 7702P
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Figure 4: Splash-3 vs Splash-4 Scalability in simulated Intel Ice Lake (gem5-20)



To do so, we modified the application codes to include
dummy instructions that will mark the beginning and end of
the different synchronization primitives. These instructions
are captured in gem5-20 at the commit stage so that only
synchronization primitives from the correct execution path are
considered. Fig. 2 shows two bars per thread count, that rep-
resent Splash-3 and Splash-4 implementations, respectively.
This Figure shows a huge jump in synchronization overhead
for FFT 64 cores, mildly contained by the sense-reversing
barriers of Splash-4. Although we see that the cycles stalled
waiting for L1 misses almost doubles when going from
32-threads to 64, meaning the level of memory-boundness
increases as core count increases, most likely due to conflicts
in L3 (since L3 size is fixed regardless of core-count). None
of the analyzed performance counter information suggests
any specific issue with the execution cores. We can also see
how barrier waiting time drops drastically for LU, Ocean
and Water-NS. Regarding lock overheads, Radiosity and
Raytrace are the applications that benefit most from the code
upgrades. Please note that this breakdown corresponds to an
Ice Lake-like simulated processor (gem5-20), so there will
be absolute value differences compared with Fig. 1.

6.2. Scalability

Fig. 3 and Fig. 4 show a scalability analysis on both
real hardware and simulator, respectively, to study how the
reduction of synchronization overheads affects performance.
Scalability is computed only considering execution time of
the region of interest (ROI) for each number of threads
normalized to the ROI time for the single-thread version.
Scalability is shown on a logarithmic scale. Also, remember
the goal of this paper is not to validate the simulation
infrastructure. Splash-4 either improves or preserves scal-
ability for both platforms, that is, Splash-4 changes are
not counterproductive on the measured systems and inputs.
Raytrace, an application with high atomic contention, stopped
scaling at four threads on Splash-3. With the code upgrades,
it can now scale up to 32 threads on real hardware and 64
on simulation. LU scalability jumps from 16 to 64 threads
on both platforms. LU is an application synchronized with
barriers but not compute-intensive. This means that after 8
threads, the cost of synchronization with the default barriers is
quite expensive compared with the computations performed
between barriers. Ocean scales up to 32 threads on real
hardware, but it does not in a simulation, despite the huge
reduction in barrier time. We will explain Ocean behavior
with performance counter information in the next Section.
Differences in Radix between real hardware and simulation
are mainly due to the reset stats location suggested by
Splash-2 authors. There is a memory allocation just before
the reset stat emplacement. This parallel memory allocation
is the main reason why Radix scales better, and also can
be seen in the simulator when stats are not reset after the
allocation. The rest of the applications experience small
performance improvements.

6.3. Execution Breakdown and Bottlenecks

We have seen how Splash-4 outperforms Splash-3 in
terms of scalability, however, for some of the applications, the
reduction on synchronization overhead does not proportion-
ally translate into performance benefits. When synchroniza-
tion overheads are removed, cores now spend execution time
either waiting for resources or memory, preventing further
scalability of the applications. This means that synchroniza-
tion overheads were hiding other performance limiting factors.
To elucidate why this is happening, we perform a detailed
analysis of performance counter information during the active
core time (performance stats in gem5-20). We base our
analysis on Intel’s Top-Down methodology [55]. This model
is described by the authors as "a practical method to quickly
identify true bottlenecks in out-of-order processors". For each
benchmark, we show a breakdown Fig. 5-left showing the
retiring, frontend-bound, bad-speculation, and backend-bound
(core and memory). Retiring accounts for µops finishing
normally. Bad-speculation represents those µops squashed
due to a branch misprediction. Frontend-bound represents
the ratio of µops stalled in fetch/decode, while backend-
bound covers µops that cannot rename/issue/execute due to
resource unavailability. Backend-bound µops are categorized
into CPU or memory bound, depending on the resources
causing these stalls. Top-Down model code changes for gem5-
20 are based on those provided by authors in [13]. Please
note that the Top-Down normalization is based on the clock
cycles and instruction count of each specific implementation.
Therefore, we can see cases like FFT, LU, Volrend and
Water-SP where retiring part of the model rises compared
to Splash-3. This is mostly related to the increase on the
number of committed instructions by around 500%, 100%,
130% and 150%, respectively, due to active waiting when
running on 64 threads. However, the retiring fraction does
not increase as much as the committed instructions, and
given that synchronization time is being reduced, it can only
mean that there are more overall Backend-bound cycles for
Splash-4 than Splash-3. The model shows how applications
like FFT, Cholesky, LU, Ocean and Radix increase the
pressure on the backend of the processor as the core count
increases.

Fig. 5-right shows a breakdown of core-bound active
cycles. Resource-related stalls are broken down into reorder-
buffer (ROB), instruction window -aka reservation stations-
(IQ), load queue/buffer (LQ), store queue/buffer (SQ), regis-
ters (REG), and data dependencies (Data). There are several
limitations to this Figure regarding how stats are computed
in gem5-20. Stall stats are accounted in a case statement in
the same order as described above. This means that if an
application stalls due to ROB resources, we do now know if
it would stall due to any of the other resources, because only
the first resource is considered. However, if an application
stalls due to a lack of REGs, we know it has no problem with
ROB, IQ, LQ, or SQ since checks for those resources are
performed before REGs. In addition, data hazard stalls can
appear in parallel with resource stalls, so they overlap, but we
cannot detect that to draw the Figures. Therefore, this Figure
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Figure 5: Per-application Top-Down model breakdown (left) and Core-bound resource stall breakdown (right)



must be used to get an overall idea of the core-bound stalls,
but it lacks the precision to be part of the official Top-Down
model. There are several conclusions we can get from this
Figure. First, register-related stalls are abundant for many of
the applications. Second, there are applications like Ocean
and Cholesky that increase the pressure in the store buffer,
preventing further scalability as core count increases, even
with the simulated 72-entry store buffer. Our guess is that
in Splash 3 cores had time to drain the store buffer between
barrier waits, but since Splash 4 drastically reduces this time,
cores stall more often. This behavior is not perceptible in
the evaluated real AMD processor, probably because of a
better memory subsystem.

7. Related Work
The main characterization papers of the Splash bench-

mark suite were performed by Woo and Bienia [7, 53].
However, they were performed in over-idealized simulation
environments or outdated hardware, mostly focusing on
metrics such as runtime and cache behavior. Other works
focus on analyzing the crucial communication and sharing
behavior of SPLASH and PARSEC applications [6, 38]. A
better way to characterize the applications, at least from a
hardware engineering perspective, is to provide performance
counter information about resource utilization and possible
bottlenecks.

Intel’s top-down model has been used to analyze multiple
benchmark suites, including SPEC2017 [30, 43], Cloud-
suite [56], NAS [5, 41], BigDataBench [25]. SPEC2017 and
BigDataBench show high variability in resource requirements
that does not appear when analyzing other metrics like IPC
or runtime. Cloudsuite analysis showed that BDA workloads
suffer from overheads related to managing the data rather than
accessing the data. NAS analysis revealed that core counters
can be used as indicators for high utilization, whereas un-core
counters are.

Other benchmark suites have also been characterized
in the past. For example, authors in [29] characterize the
SPEC2017 benchmark suite. However, they use an oversim-
plified memory system and simulation infrastructure, yet
offer wide coverage since it does not focus on a single CPU
or memory implementation. Authors include a phase analysis
based on misses per kilo-instruction. Other techniques for
finding critical code sections to focus optimization efforts
have also been proposed [17], including techniques that create
models to identify scaling bottlenecks of multi-threaded ap-
plications which are based on linear regression [20]. Authors
in [21, 22, 31] propose the use of cycle/speedup stacks to
estimate how scalability bottleneck limit the scalability of a
multi-threaded program. It thereby quantifies how much its
scalability can be improved by eliminating a given bottleneck.

Regarding scalability analysis, most articles focus on
the PARSEC benchmark suite, but their conclusions can be
extrapolated to other benchmark suites. In particular, those
results reveal that half of the benchmarks show the same
scalability for either ROI or full application runs [49]. They
also found that the runtime scalability of the simulation

inputs differs significantly from that of the native input sets.
This is mainly due to the synchronization overheads. Similar
conclusions are shown in [14]. The easiest way to deal with
this problem is by increasing the input size [9]. However,
this is a big issue for simulation environments, since the
simulation of big inputs is impractical in terms of simulation
time, especially in parallel simulations, where multi-check-
pointing is harder to achieve (e.g., [44, 45, 54]). Other papers
analyze techniques to improve scalability, like the use of task-
level parallelism (i.e., task flow) [11]. This strategy allows the
algorithm to be decoupled from the data distribution and the
underlying hardware since the algorithm is entirely expressed
as the flow of data. There are also tools for extrapolating
the scalability of in-memory applications [15].

8. Conclusions

Splash-4 is the latest revision of the Splash benchmark
suite, focused on modernizing its synchronization operations,
therefore improving the scalability of the applications. This
work presents Splash-4 and performs a detailed performance
analysis comparing with Splash-3. We base our analysis
both on real hardware and a simulated environment using
gem5-20. We also use Intel’s Top-Down model to detect
bottlenecks on the simulated cores.

Our study shows a significant improvement in the scal-
ability of Splash-4, going from 4-16 cores to 16-32 cores
on most applications. Execution time is reduced on both the
simulated environment (34%) and real hardware (52%). It
is also important to note that the code upgrades performed
in Splash-4, barely had any negative performance effects
in our evaluation, with the exception of a minor slowdown
for 16-cores, The algorithms remain the same, therefore the
revised applications with upgraded synchronization primi-
tives maintain all the computational patterns, but with the
advantage of exploiting modern synchronization hardware
features.

Performance counters revealed important information
about scalability limitations. For certain applications, such
as Ocean and Radix or FFT, there is increasing core backend
pressure when synchronization overhead is reduced. Having
less synchronization wait time means that cores have less
time to empty their store buffers from committed stores,
increasing store buffer-related stall time. On the other hand,
resource stalls act as a synchronization mechanism, reducing
barrier synchronization overhead.

In summary, the Splash benchmark suite is still a cor-
nerstone in computer architecture research. However, it
should be updated to be able to exploit modern hardware
features. Splash-4 achieves this, by introducing low-cost
synchronization mechanisms. This removes some of the
synchronization overheads and adds additional pressure to
the cores, mostly at the backend, leaving a door open for
researchers to further improve their designs.



Appendix
1. Abstract

This artifact reproduces the results shown in Fig. 1 and
Fig. 3, showing the step-by-step performance improvements
from Splash-3 to Splash-4 in an AMD EPYC 7702P. The
artifact includes the intermediate and final Splash-4 code
and scripts to reproduce automatically the results.

2. Artifact check-list (meta-information)
• Program: Splash-3, Splash-3-Atomics, Splash-3-Barriers,

and Splash-4
• Compilation: GNU GCC 7.5.0, GNU M4 1.4.18
• Data set: simsmall (included in the artifact)
• Run-time environment: GNU/Linux x86_64
• Hardware: AMD EPYC 7702P
• Metrics: Execution time, performance scalability
• Output: PDF files for Figures Fig. 1 and Fig. 3 (alterna-

tively text files with the same results can be obtained)
• How much disk space is required (approximately)?:

Less than 1 GB, less than 10GB if using docker
• How much time is needed to prepare workflow (ap-

proximately)?: One (1) hour
• How much time is needed to complete experiments

(approximately)?: Four (4) hours
• Publicly available?: yes
• Code licenses (if publicly available)?: Original Splash,

Splash-2, and Splash-3 Licenses. The rest of the code and
scripts GPL-2.0

• Archived (provide DOI)?: 10.5281/zenodo.7086143

3. Description
3.1. How to access. Please download the
code archive (tar-gz) from the artifact page
github.com/OdnetninI/Splash-4-Artifact A Dockerfile
is also provided in case is needed.

3.2. Hardware dependencies. Most of the benchmarks
consume a few megabytes when running, so anything modern
should be fine. However, our simulations were done on an
AMD EPYC 7702P, therefore expect some differences when
running on different hardware. To run all the experiments,
64 cores are expected (no SMT cores if possible).

3.3. Software dependencies. We provide a Dockerfile with
all dependencies solved. However, it can be run in a native
environment. These are the required dependencies (Ubun-
tu/Debian fashion) per step:

• Compiling and Running: gcc g++ m4 ivtools-dev
make

• Analyze results: python3 python3-pandas python3-
scipy

• Generate the graphs: texlive-latex-base texlive-fonts-
recommended texlive-fonts-extra texlive-latex-extra

• Dockerfile (only for running inside docker): docker.io

4. Installation
When running native on the machine, just unpack the

artifact package, and install the dependencies listed in the
previous section. Then, go into the splash directory

When running on docker, install docker using your
operating system package manager. Like on Ubuntu:

apt install docker.io

Then, unpack the artifact package and build the image
(it will take a while):

docker build . -t splash

To start the container run:

docker run --name splash -it splash

5. Experiment workflow
First, make sure the current directory is the splash folder.

The scripts to run are numbered from 0 to 9.

./0 _compile.sh

Compile all the benchmarks. Some warnings will appear
when compiling with gcc version 7.5.0, but applications
should compile correctly. Then, execute the benchmarks
using the following scripts (do not run them at the same
time):

./1 _run_splash_3.sh

./2 _run_splash_3_atomics.sh

./3 _run_splash_3_barriers.sh

./4 _run_splash_4.sh

After the execution of the benchmarks, to discard the
30% of outliers and prepare the data for the next step, run:

./5. trimmed_mean.sh

The data used in Figures 1 and 3, can be
view reading files Splash3-Splash4.scala and
Splash3-Atomics-Barriers-Splash4.measure, after
running:

./6 _scala.sh

./8 _cmp.sh

However, if you want to generate the graph, first you
need to produce the tex.data files, running:

./7 _scala_to_latex.sh

./9 _cmp_to_latex.sh

Then go inside the Figures directory and run make.
Two pdf files should be generated with the results
(Scalability.pdf and Compare.pdf).

If everything was run inside the docker container, you
can get the files outside the container using:

docker cp splash :/root/splash/Figures/
Scalability.pdf .

docker cp splash :/root/splash/Figures/
Compare.pdf .

The same applies to the results files if you want to
examine them:

docker cp splash :/root/splash/Splash3 -
Splash4.scala .

docker cp splash :/root/splash/Splash3 -
Atomics -Barriers -Splash4.measure .



6. Evaluation and expected results
The obtained results should reflect Fig. 1 and Fig. 3.

Some discrepancy is normal as times vary from run to run.
However, in the general case, Splash-4 should scale better
than Splash-3 providing the same or better performance.

7. Experiment customization
All the experiment workflow expects to get 1, 2, 4, 8,

16, 32, and 64 core results. However, by default, we bind
the threads to the cores. If the machine used has less than
64 logical cores, the benchmarks will not run correctly.

To disable thread to core binding, edit
the Makefile.config file inside the Splash-3,
Splash-3-Atomics, Splash-3-Barriers and Splash-4
directories to remove the -D BIND_CORES on lines 10 and
11.

For certain, very specific, configurations, the option -D
BIND_THREADS can be used instead. However, we discourage
its usage. It changes the binding order, so instead of binding
thread 0 to core 0 and thread 1 to core 1, will take into
account some SMT configurations and bind thread 0 to core
0 but thread 1 to core 2. However, this is uncommon on
current Linux systems.

8. Notes
Due to a known bug since Splash-2, FMM can livelock.

When running if no progress is made, kill the FMM process
to continue with the rest of the benchmarks. As every bench-
mark is run multiple times, one or two missing executions
should not be relevant. Docker commands usually require
super-user permissions.
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