
Efficient lock elision in TSO
Eduardo José Gómez-Hernández (Thesis Co-Directed by Alberto Ros and Stefanos Kaxiras)

Department of Computer Engineering, University of Murcia, Spain
Department of Information Technology, Uppsala University, Sweden

Introduction

Current processors include multiple cores enabling real parallelism using
threads, but they also introduce the need for synchronization, critical
sections, atomicity, race conditions, among others. Right now, many
programs can run very fast, but they stop scaling because of at least one
of the previous reasons. In this work, we are dealing with critical sections
and atomicity.

Motivation

• Processors have mechanism to stall execution, squash incorrect
instructions, and re-execute needed instructions

• Load-linked and store-conditional is the most similar thing we have to use
this mechanism for atomics, it cancels the store of the value if any other
processor has access/modified the data

• Works like Speculative Lock Elision (SLE) [2] and Hardware Transactional
Memory (HTM) [1] exploit this idea, but with a huge performance
penalty when a re-execution happens

• In HTM, re-executions appears to happen about 74% ∼ 99% of the time
in nearly all the applications [3]

Locks / Critical Sections

• When running a parallel application, some parts cannot be run in parallel,
they have to be serialized

• Using Amdahl’s law (Equation 1), the (1 − p) part will be the serialized
code

• This serialization establish an upper limit for speedup

• The main reason for serialization is the update of some shared memory
location

• When possible to use, an atomic instruction will reduce the stall time

• The main idea behind atomic instructions is that the read and write
operations will be execute atomically

S =
1

(1 − p) + p
s

(1)

Equation 1: Amdahl’s law

A typical pthreads parallel section looks like:

1 for (int i = (tid * n/threads);

2 i < ((tid + 1) * n/threads); ++i) {

3 int x = op(i);

4 // Critical Section

5 pthread_mutex_lock (&lock);

6 if (max < x)

7 max = x;

8 sum += x;

9 pthread_mutex_unlock (&lock);

10 }

Removing the parallel part, this is the critical section isolated:

1 pthread_mutex_lock (&lock);

2 if (max < x)

3 max = x;

4 sum += x;

5 pthread_mutex_unlock (&lock);

Our approaches

• Flexible Atomic Instructions
The main problem of atomic instruction is their rigidity and limitation. At
least in x86 only integer atomic instructions exist, and their operations are
very limited. A set of flexible atomic instructions will help to cover more
cases than original x86 ones.

In the previous example, using x86 atomics is only possible for part of the
code:

1 pthread_mutex_lock (&lock);

2 if (max < x)

3 max = x;

4 pthread_mutex_unlock (&lock);

5 fetch_and_add (&sum , x);

But, having flexible atomics that allow selecting which operation and
condition:

1 atomic(less , assign , &max , x);

2 atomic(none , add , &sum , x);

The problem of the previous two solutions is that max and sum are not
updated at the same time, in this example is not a problem, but in others
could be, therefore using multi-address atomics they are updated in the
same atomic group:

1 atomic(less , assign , &max , x,

2 none , add , &sum , x);

• Hardware multi-address mutex lock
Here we are approaching multiple problems at the same time. First, a
hardware mutex will help to reduce lock/unlock overhead. Second,
multi-address locking is not a trivial task, may problems can appear (most
of them deadlocking). This approach is able to be treated as a mutex just
by locking a common address (structure pointer, a specific field, etc).

Using these locks/unlocks to inform the processor which variables should
be protected from reading and writing. In this way, the code returns to be
very similar to the original one:

1 lock(max);

2 lock(sum);

3 if (max < x)

4 max = x;

5 sum += x;

6 unlock(max);

7 unlock(sum);

Goal & On-going work

• It is possible to stall the processor if needed when accessing the memory

• These stalls are directed by the answers of the coherence protocol

• Manipulating the coherence protocol is possible to generate the
lock/unlock mechanism

• If a load or store is targeting a locked address by another processor, it will
be delayed until it is unlocked from the locker processor

• To increase performance when using mutexes, a good critical block
division should be made (like a table lock vs a lock per entry)

• With our approaches where variable addresses are used, there is no need
of block division, this is made automatically

References

[1] T. Harris, J. Larus, and R. Rajwar. Transactional memory, 2nd edition. Synthesis Lectures on Computer Architecture, 5(1):1–263, Dec. 2010.

[2] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling highly concurrent multithreaded execution. In 34th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), pages 294–305, Dec. 2001.

[3] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of intel transactional synchronization extensions for high-performance. In 2013, pages
19:1–19:11, Nov. 2013.

ECHO, ERC Consolidator Grant (No 819134) Mail: eduardojose.gomez@um.es


	References

