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ABSTRACT

Nowadays, processors count with a huge amount of cores, and applications that were to scale
beyond the sequential performance use parallelism. The main problem of parallelism is synchro-
nization, critical sections, atomicity, race conditions, etc. Focusing on the critical sections environ-
ment, Speculative Lock Elision and Hardware Transactional Memory are two interesting mecha-
nisms, but when a re-execution is needed, the performance penalty is very high. In this work, we
want to show our current approaches to mitigate the cost critical sections: Flexible Atomic Instruc-
tions and Hardware multi-address mutex lock. This is still an on-going work but we think they
have the potential to improve in a significant way the performance of critical sections.
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1 Introduction

Current processors include multiple cores enabling real parallelism using threads, but they
also introduce the need for synchronization, critical sections, atomicity, race conditions,
among others. Right now, many programs can run very fast, but they stop scaling because
of at least one of the previous reasons. In this work, we are dealing with critical sections and
atomicity.

When entering in a speculative execution environment, or after a fault appears, the pro-
cessor will stall the execution, cancel the incorrect instructions and re-execute the ones that
are needed. The nearest thing that is currently available is load-linked and store-conditional.
This methodology allows to cancel the store if the data has been modified/accessed by an-
other processor.

Following the original idea of squashing and re-execute, but applied to critical sections,
there are two well-known mechanisms: Speculative Lock Elision (SLE) [RG01] and Hard-
ware Transactional Memory (HTM) [HLR10]. The main point of these ideas is the specula-
tive execution of critical sections, and if there is a collision from any other processor all the
critical section is re-executed from a non-speculative state. The main problem is the perfor-
mance impact this methodology has, in HTM, these re-executions appears to happen about
74% ∼ 99% of the time in nearly all the applications [YHLR13].
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2 Locks / Critical Sections

When running a parallel application, some parts cannot be run in parallel, they have to be
serialized (in instance (1 − p) part in Equation 1), establishing an upper limit for speedup.
Mainly because a shared memory location will be updated or modified. To avoid invalid re-
sults there are two solutions, serialize the section (critical section) or use atomic instructions.

S =
1

(1− p) + p
s

(1)

Equation 1: Amdahl’s law

If the operation to apply to that memory location is simple enough that an atomic in-
struction exists, this should be used as it has much less overhead than serialize the section.
The idea behind atomic instructions is that the read and write operation will be executed
atomically, therefore there is no room to another thread to read and write a wrong value.

3 Our Approaches

3.1 Flexible Atomic Instructions

The main problem of atomic instruction is their rigidity and limitation. At least in x86 only
integer atomic instructions exist, and their operations are very limited. A set of flexible
atomic instructions will help to cover more cases than original x86 ones.

In the previous example, using x86 atomics is only possible for part of the code:

1 pthread_mutex_lock(&lock);
2 if (max < x)
3 max = x;
4 pthread_mutex_unlock(&lock);
5 fetch_and_add(&sum, x);

But, having flexible atomics that allow selecting which operation and condition:

1 atomic(less, assign, &max, x);
2 atomic(none, add, &sum, x);

The problem of the previous two solutions is that max and sum are not updated at the
same time, in this example is not a problem, but in others could be, therefore using multi-
address atomics they are updated in the same atomic group:

1 atomic(less, assign, &max, x,
2 none, add, &sum, x);

3.2 Hardware multi-address mutex lock

Here we are approaching multiple problems at the same time. First, a hardware mutex will
help to reduce lock/unlock overhead. Second, multi-address locking is not a trivial task,



may problems can appear (most of them deadlocking). This approach is able to be treated
as a mutex just by locking a common address (structure pointer, a specific field, etc).

Using these locks/unlocks to inform the processor which variables should be protected
from reading and writing. In this way, the code returns to be very similar to the original one:

1 lock(max);
2 lock(sum);
3 if (max < x)
4 max = x;
5 sum += x;
6 unlock(max);
7 unlock(sum);

4 Goal and On-going work

With the current mechanisms, it is possible to stall the processor if needed when access-
ing the memory, but besides that, they are directed by the answers of the coherence proto-
col. Therefore, manipulating the coherence protocol is possible to generate the lock/unlock
mechanism.

If a load or store is targeting a locked address by another processor, it will be delayed
until it is unlocked from the locker processor. In this way, it is possible to avoid re-execution.

As this mechanism treat addresses in loads and stores, it is easier to execute critical sec-
tions concurrently. To increase performance when using mutexes, a good critical block divi-
sion should be made (like a table lock vs a lock per entry). In this case, this is not needed
because it will be made automatically.
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