
Efficient, Distributed, and Non-Speculative
Multi-Address Atomic Operations

Eduardo José Gómez-Hernández and Juan M. Cebrian and Rubén Titos-Gil and Stefanos Kaxiras and Alberto Ros

University of Murcia, Spain and Uppsala University, Sweden

Introduction

Synchronization, critical sections, atomicity, race conditions, among others,
are some of the needs that current multi-threaded applications running on
top of multi-core processors have. These needs slowdown programs that
otherwise could run very fast, decreasing their scalability.

Motivation

• While prior work in multi-address atomicity exists, they did not consider
several deadlock scenarios when distributively locking several
cachelines, nor provide a safe, non-speculative, solution.

• Atomic RMW instructions are the most efficient way to perform an
atomic update of a variable since they are genuinely hardware
operations.

• Non-blocking algorithms rely on directly using atomic read-modify-write
(RMW) primitives natively provided by the hardware. Commonly, a
compare-and-swap(CAS) instruction.

• A vector instruction computes several data elements exploiting
data-level parallelism. Therefore, without multi-address atomics, it is
not possible to provide vector atomic operations in a SIMD processor.

Lexicographical Order

Address order does not take into account some hardware structures like the
cache. This is not a problem when using software locks. However, when
using the cache itself to implement the lock system, its size and structure
become relevant.

Address
Order

Lexicographical
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

EB
AF
D

GC

0
1
2
3

E
A
F
G

0
1
2
3

Cache Queue

Core
0

LexOrder = CacheLine Address % Cache Sets

Cores Wants to Lock Lock Order

Core 0

Core 1

Core 2

AEFG EAFG

ABG

CDF

BAG

FDC

Memory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

a

b
c

Figure 1: Address Order vs Lexicographical Order

This order forces locks to be held from the top part of the cache to the
bottom. In the example (Figure 1), cores will crash in the upper part of
the cache.

Lexicographical reOrder Unit

Directory

LLC

Fetch
Decode

Rename

R
O

B

In
st

. 
Q

u
e
u
e

FU
UnitsLSU

LexOURegister
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

LexOU
Logic

Lock Queue

Addr
Cou

nte
r

Lo
ck

Hit Con
fli

ct

Figure 2: Microarchitectural changes

The Lexicographical reOrder Unit (LexOU), is the main structure that
manages the new locking system for multiaddress atomics (MAD). Built
from a small memory that acts like a sorted queue (Figure 2), it handles
the reordering of the locks to guarantee progress.

Small changes are required to the directory and the L1 cache to allow the
hardware locking mechanism and prevent deadlocks between different
cores.

MAD Atomics

Multiaddress atomics (MAD Atomics) are very similar to current x86
atomics but allowing multiple addresses per instruction. All the addresses
and values are loaded into general-purpose registers to prevent accessing
memory after requesting the lock.

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a

a)

b)

c) t2 = lock a
t1 = lock b
t1++
t2++
unlock t1 b
unlock t2 a

d)

Figure 3: Example of a MAD atomic and its microcode

In Figure 3, a typical mutex lock with two increments is replaced by a MAD
atomic that would execute the increment atomically in both variables.
Assuming that address ‘a’ has a smaller lexorder than address ‘b’, the lock
of address ‘a’ will be performed earlier than address ‘b’. Note that this is
only from the memory viewpoint, no instruction reordering is happening.

Results

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0

BSTree Deque HashMap MWObject Queue Stack

S
p

ee
du

p

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

Bitcoin Water-NS Water-SP Intruder Geomean

S
p

ee
du

p

Mutex Lock Lock-Free TSX MAD Atomics

Figure 4: Scalability of the benchmarks (1 to 64 cores) . Each version is normalized to the lock version running a single thread.

ECHO, ERC Consolidator Grant (No 819134) Accepted in MICRO-54 2021 Mail: eduardojose.gomez@um.es


