
Splash-4: Improving Scalability with
Lock-Free Constructs

Eduardo José Gómez-Hernández∗, Ruixiang Shao∗, Christos Sakalis†, Stefanos Kaxiras† and Alberto Ros∗
∗ Computer Engineering Department, University of Murcia, Murcia, Spain

† Department of Information Technology, Uppsala University, Uppsala, Sweden
eduardojose.gomez@um.es, ruixiang.shaop@um.es, christos.sakalis@it.uu.se, stefanos.kaxiras@it.uu.se, aros@ditec.um.es

Abstract—Over the past three decades, the parallel applica-
tions of the Splash-2 benchmark suite have been instrumental
in advancing multiprocessor research. Recently, the Splash-3
benchmarks eliminated performance bugs, data races, and im-
proper synchronization that plagued Splash-2 benchmarks after
the definition of the C memory model.

In this work, we revisit the Splash-3 benchmarks and adapt
them for contemporary architectures with atomic operations and
lock-free constructs. With our changes, we improve the scalability
of most benchmarks for up to 32 and 64 cores, showing an
improvement of up to 9x in actual machines, and up to 5x
in simulation, over the unmodified Splash-3 benchmarks. To
denote the substantive nature of the improvements in the Splash-3
benchmarks and to re-introduce them in contemporary research,
we refer to the new collection as Splash-4.1

Index Terms—Benchmarks, simulation, synchronization,
atomic operations, optimization.

I. INTRODUCTION

Splash-2 [9] is the first major parallel benchmark suite that
proved instrumental in the development of shared memory
multiprocessors. A significant body of work bases its obser-
vations on the behavior of the Splash-2 benchmarks, and this
is still relevant and useful today [1], [2].

While Splash-2 shows unexpected and sometimes incorrect
behavior when used within contemporary compilers and hard-
ware, a relatively recent update, Splash-3 [8], exposes the data
races and performance bugs in Splash-2 and solves these issues
by properly synchronizing the benchmarks.

The driving consideration in the development of Splash-2
was to demonstrate shared-memory scalability. Indeed,
Splash-2, under the evaluation techniques prevailing at the
time (e.g., under a perfect memory system), showed near
linear scalability in most of the benchmarks for up to 64
processors [9].

In the more recent Splash-3 work [8], using a more accurate
simulation infrastructure, most of the Splash-3 benchmarks
reach a speedup between 16x to 64x in a 64-core multicore.
However, these results were obtained with an in-order proces-
sor model.

On actual processors (AMD EPYC 7702P, 64 Cores), most
of the applications exhaust their scaling (i.e., show no further
performance improvement) using somewhere between 4 and
16 cores, with a maximum speedup of 10x. Conversely, using
the latest out-of-order core simulation models (mirroring the

1GitHub repository: https://github.com/OdnetninI/Splash-4

configuration of an Intel Skylake processor), the same Splash-3
benchmarks exhaust their scaling, somewhat higher than in the
actual AMD hardware, but still in a range between 16 and 32
cores, and with a maximum speedup of 15x.

One problem is that Splash-2 and Splash-3 benchmarks
are crafted using outdated programming techniques and, as a
result, are overshadowed by the more recent PARSEC [3]. The
later have the benefit of a vastly expanded set of programming
tools, e.g., C11 atomics, since the time of Splash-2.

II. UPDATING SPLASH-3 SYNCHRONIZATION

We systematically count the shared variables accessed on
each critical section using a custom Pintool [6]. Initially, we
target critical sections that modify a single shared variable.
These critical sections can be easily replaced by an atomic
operation. Then, we look at critical sections that access a few
shared variables and try to find their lock-free equivalent.

Modern ISAs (e.g., x86, some ARM ISAs) and program-
ming languages (e.g., C, C++, Java) typically provide a basic
set of atomic operations that can be used in place of critical
sections, offering both atomicity and synchronization. This
basic set consists of atomic loads and stores, atomic read–
modify–write (RMW) operations (such as fetch–and–add), and
some atomic comparisons and exchange operations (such as
compare–and–swap, CAS).

Using the CAS construct, a custom RMW fetch–and–add
operation [5] for double precision floating point numbers can
be implemented. The RMW atomics are typically available
only for integer types, especially when only considering lock-
free atomics. CAS on the other hand is type-agnostic, so it
can be used to implement RMW operations for more complex
underlying types.

For the Splash-3 benchmarks, the execution time between
barriers is fairly short. To minimize the overhead of the barrier
operation, in Splash-4, we provide a sense-reversing barrier
optimized for short waiting times [7].

III. METHODOLOGY & EVALUATION

We use two different environments to execute the appli-
cations: (1) A modern machine, AMD Epyc 7702P CPU,
with Hyper-threading enabled but running one thread on each
physical core and (2) a state-of-the-art full-system simulator,
gem5 [4], modeling an Intel Skylake-like processor.

1



1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0

2

4

6

8

10

12

14

16

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP

Sc
al

ab
ili

ty
Splash-3 Splash-4

Fig. 1. Splash-3 vs Splash-4 Scalability on an actual processor

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0
2
4
6
8

10
12
14
16

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP

Sc
al

ab
ili

ty

Splash-3 Splash-4

Fig. 2. Splash-3 vs Splash-4 Scalability in simulation

While, ideally, we would like for the results of these two
systems to match completely, in practice simulators have
inaccuracies that lead to performance differences. However,
we expect the overall behavior to be similar in both.

We evaluate Splash-4 (sense-reversing centralized barriers
and lock-free) against the original Splash-3. On the real
machine, we run ten executions of each application and collect
the average, minimum, and maximum speedup for each. These
can be seen in Figure 1. The error bars indicate the minimum
and maximum speedups observed, relative to the average
value. Similarly, Figure 2 shows the results using gem5, but
without error bars, as the simulator is deterministic.

When comparing these two, the most obvious difference can
be seen with Radiosity. While in the simulator Radiosity is one
of the best scaling applications, on the real system it does not
scale as well. Otherwise, the rest of the applications exhibit
similar behavior in both the simulator and the real system, with
many applications scaling better in Splash-4 than in Splash-3,
especially on the real system. In particular, Raytrace and both
Ocean versions of Splash-3 only scale up to four cores, while
the Splash-4 versions scale up to 32 cores.

IV. CONCLUSIONS

In this work, we focus on the performance of the syn-
chronization operations used in the Splash-3 benchmark suite,
with the goal of modernizing and improving the scalability of
the applications. We transform critical sections into lock-free
constructs, while maintaining the applications’ behavior.

We evaluate the new version of the suite, named Splash-4,
both in a state-of-the-art simulator and in a current processor.
Splash-4 exercises the atomic support of the hardware and
scales better than Splash-3 (from 8 and 16 cores up to 32 and
64 cores) for most of the applications under current hardware.

V. FUTURE WORK

While modifying the Splash-3 benchmarks, replacing lock-
based synchronization constructs with lock-free atomic-based
ones, we kept all the algorithms exactly the same. However,

some of the applications (e.g. FFT, LU) can be further modi-
fied to remove barriers and replace them with signal and wait
operations instead. Other algorithmic improvements can also
be made to further improve scalability. For example, in Barnes,
many of the critical sections could not be replaced with lock-
free equivalents without modifying the algorithm.

ACKNOWLEDGMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
819134).

REFERENCES

[1] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of splash-2 and parsec,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 86–97.

[2] C. Bienia, S. Kumar, and Kai Li, “Parsec vs. splash-2: A quantitative com-
parison of two multithreaded benchmark suites on chip-multiprocessors,”
in 2008 IEEE International Symposium on Workload Characterization,
2008, pp. 47–56.

[3] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, Jan. 2011.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, May
2011.

[5] H. Gao and W. Hesselink, “A general lock-free algorithm using compare-
and-swap,” Information and Computation, vol. 205, no. 2, pp. 225–241,
2007.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in 2005 Conf. on
Programming Language Design and Implementation (PLDI), Jun. 2005,
pp. 190–200.

[7] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, no. 1, pp. 21–65, Feb. 1991.

[8] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly
synchronized benchmark suite for contemporary research,” in Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Apr. 2016,
pp. 101–111.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” in 22nd
Int’l Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 24–36.

2


