
RECODING THE CAFFE FRAMEWORK USING THE
PERFORMANCE PORTABILITY PHILOSOPHY

Eduardo José Gómez-Hernández1, Biagio Peccerillo2, Sandro Bartolini2, José Manuel García1

1Computer Engineering Department, University of Murcia, Spain
2Department of Information Engineering and Mathematical Sciences, University of Siena, Italy

{eduardojose.gomez,jmgarcia}@um.es, {peccerillo,bartolini}@dii.unisi.it

Motivation
We are entering a new era in computer architecture, the multi- and many-core era is not scaling as expected, and domain-specific architectures (DSAs) are
achieving better efficiency. Each one of these DSAs has its own language (DSL). Programming each one of these architectures is hard, therefore an evolution in
DSLs based in portability with low-performance losses is a priority. [Dean, Patterson and Young (2018)]

PHAST

• Single source programs for multiple devices is a
development goal to be accomplished. Program
once and execute anywhere. Easy portability across
different parallel architectures is extremely
important.

• This new approach recalls well-established,
highly-expressive techniques.

• PHAST (Parallel Heterogeneous-Architecture
STL-like Template library) is a modern C++
programming library based on the classic STL
"containers", for the performance portability
philosophy.

Figure 1 – PHAST Library Logo.

Source: Peccerillo and Bartolini (2019).

Deep Neural Networks & Caffe

• It seems that we are at the dawn of an era of
computing systems where artificial intelligence is
the key to everything.

• Deep learning has become more and more
ubiquitous, specifically deep neural networks, being
able to outperform human performance, in some
tasks.

• Deep neural networks are complex to develop but
also computer-intensive, requiring a lot of time to
train. Therefore, frameworks like Tensorflow,
MXNet, or Caffe provide an optimized environment
for CPUs, GPUs, TPUs, FPGA, and so on.

• Caffe, developed by Berkeley, was the first one to
arrive. Nowadays its development has finished but
continues to be used, and it is an excellent tool for
learning.

Figure 2 – Caffe’s LeNet example network for MNIST.

C
o
n
vo

lu
ti

o
n

Po
o
lin

g

C
o
n
vo

lu
ti

o
n

Po
o
lin

g

In
n
e
r

Pr
o
d
u
ct

In
n
e
r

Pr
o
d
u
ct

Source: Jia and Shelhamer (2019).

Development

• Caffe is built from multiple
modules.

• Blob is a container class and
many others are the
executors.

• To make the less number of
changes as possible, we can
add PHAST to the container
and the executors.

Figure 3 – Caffe framework schematic.
Init

Network

Layers

Inner Product

Convolution

Pooling

Solver

SGD

Adam

RMSProBlob

Sync Memory

Caffe
+

Bindings

Phast

Phast

Phast

Phast

• Until now, we have ported to PHAST the Blob and 7 layers with both feed- and
back-forward.

• Each module that uses a Blob and is not modified to used PHAST, will force a copy to CPU
memory, and then back to PHAST.

• We are looking to port other important layers, allowing us to execute more complex networks.
• Modify the solvers to avoid unnecessary copies between PHAST memory and Caffe memory.
• Each function that we need and is not implemented in PHAST, can be added using a
functor, being reusable code to the whole program and easily portable to other applications.

Code Example

• Caffe original implementation of inner product for CPU and GPU as two separated source
code files, each one has 8 and 12 lines of code respectively.

• The PHAST inner product version can be used for CPU and GPU, and it is only a file of
about 10 lines of code.

1 phas t : : mat r i x<float> matA = bottom[0]−>getDataAsMatr ix (M_, K_, false) ;
2 phas t : : mat r i x<float> matB = this−>blobs_ [0]−>getDataAsMatr ix (K_, N_, ! t r a n s p o s e) ;
3 phas t : : mat r i x<float> matC = top [0]−>getDataAsMatr i x (M_, N_, false) ;
4 phas t : : dot_product (matA , matB , matC) ;
5 if (bias_term_) {
6 matr i xP lusVectorRows<float> matr i xP lusVecto rRows ;
7 mat r i xP lusVec to rRows . vec . l i n k (this−>blobs_ [1]−>getDataAsVector (N_)) ;
8 phas t : : f o r_each (matC . beg i n_ i () , matC . end_i () , mat r i xP lusVecto rRows) ;
9 }
10 if (! t r an spose_) matB . t r a n s p o s e () ;

Listing 1: Phast InnerProduct Feed-Forward CPU/GPU/... implementation

1 template <typename T, unsigned int p o l i c y = phas t : : g e t_d e f a u l t_ p o l i c y ()>
2 struct matr i xP lusVecto rRows : phas t : : f u n c t o r : : func_vec<T, p o l i c y > {
3 _PHAST_METHOD matr i xP lusVecto rRows () {}
4 _PHAST_METHOD void operator () (phas t : : f u n c t o r : : v e c to r<T>& row) {
5 for (auto r = row . beg i n () , i = vec . beg i n () ; r != row . end () ; ++r , ++i)
6 ∗ r += ∗ i ;
7 }
8 phas t : : f u n c t o r : : v e c to r<T> vec ;
9 } ;

Listing 2: matrixPlusVectorRows auxiliary function

Ultimate Goal
Reach the real modern code: one code for all platforms (optimized, portable
and future-prof).

Acknowledgements
This work was partially supported by the Spanish MCIU and AEI, as well as
European Commission FEDER funds, under grant RTI2018-098156-B-C53.

References
DEAN, J.; PATTERSON, D.; YOUNG, C. A New Golden Age in Computer Architecture: Empowering the
Machine-Learning Revolution. IEEE Micro, IEEE, v. 38, n. 2, p. 21–29, 2018.
JIA, Y.; SHELHAMER, E. Caffe | LeNet MNIST Tutorial. [S.l.: s.n.]. Address:
<https://caffe.berkeleyvision.org/gathered/examples/mnist.html>. Visited on: 22 May
2019.
PECCERILLO, B.; BARTOLINI, S. PHAST library. [S.l.: s.n.]. Address:
<https://www.phast-library.com/>. Visited on: 20 May 2019.

mailto:\protect \T1\textbraceleft eduardojose.gomez,jmgarcia\protect \T1\textbraceright @um.es
mailto:\protect \T1\textbraceleft peccerillo,bartolini\protect \T1\textbraceright @dii.unisi.it
https://caffe.berkeleyvision.org/gathered/examples/mnist.html
https://www.phast-library.com/

