
SPLASH-4: A MODERN BENCHMARK SUITE WITH

LOCK-FREE CONSTRUCTS

Eduardo José Gómez-Hernández1 Juan M. Cebrian1

Stefanos Kaxiras2 Alberto Ros1

1Computer Engineering Department
University of Murcia, Spain

2Department of Information Technology
Uppsala University, Sweden

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 1 / 22

OVERVIEW

▶ The cornerstone for the performance evaluation is the benchmark suite

▶ Benchmark suites can misrepresent the performance characteristics

▶ Keeping up with architectural changes while maintaining the same workloads
is a real challenge

▶ We introduce Splash-4, a revised version of Splash-3 (an update on
Splash-2), that introduces modern programming techniques to improve
scalability on contemporary hardware

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 2 / 22

OVERVIEW

▶ The cornerstone for the performance evaluation is the benchmark suite

▶ Benchmark suites can misrepresent the performance characteristics

▶ Keeping up with architectural changes while maintaining the same workloads
is a real challenge

▶ We introduce Splash-4, a revised version of Splash-3 (an update on
Splash-2), that introduces modern programming techniques to improve
scalability on contemporary hardware

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 2 / 22

MOTIVATION

1995
2007

2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

1Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

2Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary

Research", ISPASS 2016
4Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free

Constructs", ISPASS 2021
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 3 / 22

MOTIVATION

1995
2007

2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

1Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

2Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary

Research", ISPASS 2016
4Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free

Constructs", ISPASS 2021
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 3 / 22

The first major parallel
benchmark suite. Still
in use (+5k cites)1

MOTIVATION

1995
2007

2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

1Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

2Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary

Research", ISPASS 2016
4Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free

Constructs", ISPASS 2021
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 3 / 22

The first major parallel
benchmark suite. Still
in use (+5k cites)1

A small update that
fixes bugs and updates
the programming style2

MOTIVATION

1995
2007

2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

1Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

2Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary

Research", ISPASS 2016
4Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free

Constructs", ISPASS 2021
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 3 / 22

The first major parallel
benchmark suite. Still
in use (+5k cites)1

A small update that
fixes bugs and updates
the programming style2

First major update that
fixes data races and
performance bugs3

MOTIVATION

1995
2007

2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

1Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

2Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary

Research", ISPASS 2016
4Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free

Constructs", ISPASS 2021
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 3 / 22

The first major parallel
benchmark suite. Still
in use (+5k cites)1

A small update that
fixes bugs and updates
the programming style2

First major update that
fixes data races and
performance bugs3

Current update,
exploiting lockfree and
atomic operations4

MOTIVATION

▶ Splash-2 and Splash-3 are crafted using outdated
programming techniques

▶ Previous works noticed that the default input
sizes limit the scalability of some applications.
▶ The computation between synchronization points

is not substantially longer than the
synchronization

▶ Using larger datasets increases the execution
time, and that is a problem when using simulation
infrastructures

1 2 4 8 16 32 64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
.

E
xe

cu
ti

o
n

T
im

e

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 4 / 22

SPLASH-3

▶ Splash-3 exposes data races and performance bugs, and fixed them

▶ In the analysis done using GEMS (in a 64-core in-order multicore),
benchmarks reach an speedup between 16× to 47×

▶ In our simulated environment (gem5-20 Intel’s IceLake-like 64 out of order
cores): the scalability stops between 16 and 32 cores, with an average
speedup of 2.3×

▶ In our real hardware (64-Core AMD EPYC 7702P), scalability stops between
4 and 16 cores, with an average speedup of 4.7×

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 5 / 22

SPLASH-4

▶ Synchronization is done with combination of software locks, conditional
variables, and barriers

▶ The main idea is to replace high-overhead synchronization operations with
newer lightweight alternatives

▶ This translates into a performance improvement by expanding the
architectural features that the benchmarks can exercise

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 6 / 22

SPLASH-4: LOCKFREE AND ATOMICS

▶ Modern ISAs typically provide a basic set of atomic operations that offer both
atomicity and synchronization

▶ This basic set consists of atomic loads and stores, atomic read-modify-write
(RMW) operations, and some atomic comparisons and exchange operations

▶ Typical hardware RMW atomics are only available for integer types

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 7 / 22

VOLREND (ADAPTIVE.C.IN:182/199)

Splash-3

1 /* Lock */
2 ALOCK(Global ->QLock , local_node) ;
3 work = Global ->Queue [local_node

] [0] ;
4 Global ->Queue [local_node] [0] +=

1 ;
5 AULOCK(Global ->QLock , local_node) ;

Splash-4

1 /* Lock - f r e e */
2 work = FETCH_ADD(Global ->Queue [

local_node] [0] , 1) ;

ALOCK/AULOCK → mutex lock/unlock
FETCH_ADD → atomic_fetch_and_add - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 8 / 22

SPLASH-4: LOCKFREE AND ATOMICS
WHILE&CAEXCH CONSTRUCT

▶ Atomic Compare-and-Swap (CAS) and Atomic Compare-and-Exchange
(CAExch) are type-agnostic

▶ They can be used to implement RMW operations for more complex underlying
types

1 CAExch(ptr , oldValue , newValue) ;
▶ If oldValue == (∗ptr) then (∗ptr) = newValue
▶ Else oldValue = (∗ptr)

1 var oldValue = LOAD(ptr) ;
2 var newValue ;
3 do {
4 newValue = new ;
5 } whi l e (! CAExch(ptr , oldValue , newValue)) ;

LOAD → Atomic Load
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 9 / 22

SPLASH-4: LOCKFREE AND ATOMICS
WHILE&CAEXCH CONSTRUCT

▶ Atomic Compare-and-Swap (CAS) and Atomic Compare-and-Exchange
(CAExch) are type-agnostic

▶ They can be used to implement RMW operations for more complex underlying
types

1 CAExch(ptr , oldValue , newValue) ;
▶ If oldValue == (∗ptr) then (∗ptr) = newValue
▶ Else oldValue = (∗ptr)

1 var oldValue = LOAD(ptr) ;
2 var newValue ;
3 do {
4 newValue = new ;
5 } whi l e (! CAExch(ptr , oldValue , newValue)) ;

LOAD → Atomic Load
Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 9 / 22

OCEAN (MULTI.C.IN:90)
ATOMIC MAX

Splash-3

1 /* Lock */
2 LOCK(locks ->error_lock)
3 i f (l o c a l_e r r > multi ->err_mult i)

{
4 multi ->err_mult i = l o c a l_e r r ;
5 }
6 UNLOCK(locks ->error_lock)

Splash-4

1 /* Lock - f r e e */
2 double expected = LOAD(multi ->

err_mult i) ;
3 do {
4 i f (l o c a l_e r r <= expected)

break ;
5 } whi l e (! CAExch(multi ->err_multi

, expected , l o c a l_e r r)) ;

LOCK/UNLOCK → mutex lock/unlock
LOAD → Atomic Load - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 10 / 22

SPLASH-4: CRITICAL SECTION SPLITTING

▶ Splash-4 uses lock-free constructs that manage a single address and replace
to critical sections that modify a single address

▶ Splitting a larger critical section that modifies more than one address would
enable the use of lock-free constructs in more cases

▶ Unfortunately, splitting large critical sections, is not possible in the general
case

▶ Many Splash-3 critical sections, (atomic) updates of independent variables
are grouped together in larger critical sections for no apparent reason

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 11 / 22

WATER (POTENG.C.IN 159/253)

▶ Atomic Double Floating Point Addition (FETCH_AND_ADD_DOUBLE)
1 double oldValue = LOAD(ptr) ;
2 double newValue ;
3 do {
4 newValue = oldValue + add i t i on ;
5 } whi l e (! CAExch(ptr , oldValue , newValue)) ;

Splash-3

1 /* Lock */
2 LOCK(gl ->PotengSumLock) ;
3 *POTA = *POTA + LPOTA;
4 *POTR = *POTR + LPOTR;
5 *PTRF = *PTRF + LPTRF;
6 UNLOCK(gl ->PotengSumLock) ;

Splash-4

1 /* Lock - f r e e */
2 FETCH_AND_ADD_DOUBLE(POTA, LPOTA)

;
3 FETCH_AND_ADD_DOUBLE(POTR, LPOTR)

;
4 FETCH_AND_ADD_DOUBLE(PTRF, LPTRF)

;

LOCK/UNLOCK → mutex lock/unlock
LOAD → Atomic Load - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 12 / 22

WATER (POTENG.C.IN 159/253)

▶ Atomic Double Floating Point Addition (FETCH_AND_ADD_DOUBLE)
1 double oldValue = LOAD(ptr) ;
2 double newValue ;
3 do {
4 newValue = oldValue + add i t i on ;
5 } whi l e (! CAExch(ptr , oldValue , newValue)) ;

Splash-3

1 /* Lock */
2 LOCK(gl ->PotengSumLock) ;
3 *POTA = *POTA + LPOTA;
4 *POTR = *POTR + LPOTR;
5 *PTRF = *PTRF + LPTRF;
6 UNLOCK(gl ->PotengSumLock) ;

Splash-4

1 /* Lock - f r e e */
2 FETCH_AND_ADD_DOUBLE(POTA, LPOTA)

;
3 FETCH_AND_ADD_DOUBLE(POTR, LPOTR)

;
4 FETCH_AND_ADD_DOUBLE(PTRF, LPTRF)

;
LOCK/UNLOCK → mutex lock/unlock
LOAD → Atomic Load - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 12 / 22

SPLASH-4: SENSE-REVERSING CENTRALIZED BARRIER

▶ The execution time between
barriers is fairly short

▶ To minimize the overhead, we
implement a sense-reversing
barrier

▶ This construct is optimized for
short waiting times, except when
oversubscribing threads

1 l o ca l_sense = ! l o ca l_sense ;
2 i f (atomic_fetch_sub (&(count) , 1)

== 1) {
3 count = threads ;
4 STORE(sense , l o ca l_sense) ;
5 } e l s e {
6 do {} whi l e (LOAD(sense) !=

loca l_sense) ;
7 }

LOAD → Atomic Load - Sequential Consistency
STORE → Atomic Store - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 13 / 22

SPLASH-4: SENSE-REVERSING CENTRALIZED BARRIER

▶ The execution time between
barriers is fairly short

▶ To minimize the overhead, we
implement a sense-reversing
barrier

▶ This construct is optimized for
short waiting times, except when
oversubscribing threads

1 l o ca l_sense = ! l o ca l_sense ;
2 i f (atomic_fetch_sub (&(count) , 1)

== 1) {
3 count = threads ;
4 STORE(sense , l o ca l_sense) ;
5 } e l s e {
6 do {} whi l e (LOAD(sense) !=

loca l_sense) ;
7 }

LOAD → Atomic Load - Sequential Consistency
STORE → Atomic Store - Sequential Consistency

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 13 / 22

SPLASH-4: SUMMARY

▶ A total of 50 critical sections (33%) has been transformed.
▶ 27 critical sections (18%) were converted into C11 atomics

▶ 18 critical sections (12%) were converted into CAS-construct (without splitting)

▶ Splitting Critical sections allowed 5 more critical sections (3%) to be converted
into 15 CAS-construct

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 14 / 22

EVALUATION: METHODOLOGY

▶ Measurements account for the region of interest (ROI)
▶ We used the recommended inputs from Splash-3 for all the executions

▶ The hardware used is an AMD Epyc 7702P CPU

▶ The simulated machine (in gem5-20) is mimicking an Intel’s IceLake
processor
▶ Measurements reset stats after a warm-up period

(as suggested by the original Splash-2 developers)

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 15 / 22

EVALUATION: SIMULATOR OVERHEAD BREAKDOWN

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP

T
im

e
(%

of
to

ta
l)

Barrier Lock Acq Lock Rel CS Time Atomic Lock-free constructs

▶ Most of the cases the execution time is dominated by the barriers
▶ Raytrace gets a huge overhead reduction due to the lock-free constructs

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 16 / 22

Splash-3

Splash-4

EVALUATION: TOP-DOWN (OCEAN-CONT)

Retiring Front-end BadSpec CoreBound MemBound ROB IQ LQ SQ REG Data

1 2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

S
ta

ll
in

g

1 2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

S
ta

ll
in

g

▶ Top-Down groups several hardware counters to understand easier the reason
of the stalling

▶ In Splash-4 we observe an increase on the back-end pressure

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 17 / 22

EVALUATION: SIMULATOR SCALABILITY

1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4

20

21

22

23

24

25

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP

S
ca

la
b
il

it
y

Splash-3 Splash-4

▶ In general, scalability improvement is moved from 16 to 32

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 18 / 22

EVALUATION: REAL MACHINE SCALABILITY

1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4 1 2 4 8
1

6
3

2
6

4

20

21

22

23

24

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP

S
ca

la
bi

li
ty

Splash-3 Splash-4

▶ In general, scalability improvement is moved from 4 to 16

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 19 / 22

EVALUATION: REAL MACHINE 64 THREADS SUMMARY

Barnes Cholesky FFT FMM LU-Cont LU-Non Ocean-Cont Ocean-Non Radiosity Radix Raytrace Volrend Water-NS Water-SP Geomean

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
.

E
xe

cu
ti

on
T

im
e

Splash-3 Atomics Barrier Splash-4

▶ With the lock-free constructs the execution time is reduced 11%
▶ With the new barriers the execution time is reduced 40%
▶ The combined reduction is 52%

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 20 / 22

CONCLUSIONS

▶ We presented The Splash-4 Benchmark Suite
▶ We performed a detailed performance analysis comparing with Splash-3

▶ Our study shows:
▶ A significant improvement on scalability
▶ Execution time is reduced significantly on the simulated and real hardware

▶ In summary:
▶ The Splash benchmark suite is still a cornerstone in computer architecture

research
▶ It should be updated to be able to exploit modern hardware features

Splash-4 removes some of the synchronization overheads, showing the
hidden reasons that prevents applications from scaling, leaving a door
open for researchers to further improve their designs

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 21 / 22

CONCLUSIONS

▶ We presented The Splash-4 Benchmark Suite
▶ We performed a detailed performance analysis comparing with Splash-3

▶ Our study shows:
▶ A significant improvement on scalability
▶ Execution time is reduced significantly on the simulated and real hardware

▶ In summary:
▶ The Splash benchmark suite is still a cornerstone in computer architecture

research
▶ It should be updated to be able to exploit modern hardware features

Splash-4 removes some of the synchronization overheads, showing the
hidden reasons that prevents applications from scaling, leaving a door
open for researchers to further improve their designs

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 21 / 22

CONCLUSIONS

▶ We presented The Splash-4 Benchmark Suite
▶ We performed a detailed performance analysis comparing with Splash-3

▶ Our study shows:
▶ A significant improvement on scalability
▶ Execution time is reduced significantly on the simulated and real hardware

▶ In summary:
▶ The Splash benchmark suite is still a cornerstone in computer architecture

research
▶ It should be updated to be able to exploit modern hardware features

Splash-4 removes some of the synchronization overheads, showing the
hidden reasons that prevents applications from scaling, leaving a door
open for researchers to further improve their designs

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 21 / 22

CONCLUSIONS

▶ We presented The Splash-4 Benchmark Suite
▶ We performed a detailed performance analysis comparing with Splash-3

▶ Our study shows:
▶ A significant improvement on scalability
▶ Execution time is reduced significantly on the simulated and real hardware

▶ In summary:
▶ The Splash benchmark suite is still a cornerstone in computer architecture

research
▶ It should be updated to be able to exploit modern hardware features

Splash-4 removes some of the synchronization overheads, showing the
hidden reasons that prevents applications from scaling, leaving a door
open for researchers to further improve their designs

Eduardo José Gómez-Hernández IISWC 2022 November 07, 2022 21 / 22

SPLASH-4: A MODERN BENCHMARK SUITE WITH

LOCK-FREE CONSTRUCTS

Eduardo José Gómez-Hernández1 Juan M. Cebrian1

Stefanos Kaxiras2 Alberto Ros1

eduardojose.gomez@um.es

Thank you for your attention!

ECHO, ERC Consolidator Grant (No 819134)
Spanish Ministerio de Economía, Industria y Competitividad – Agencia Estatal de

Investigación (ERC2018-092826)

This presentation and recording belong to the authors. No distribution is allowed without the authors’ permission.

Eduardo José Gómez-Hernández IISWC 2022 October 16, 2021 22 / 22

INDEPENDENT VARIABLES

▶ During the possible window of execution time of the critical section, all
variables cannot be related on any way, even not giving information from one
to another

1 LOCK(lock) ;
2 ptr = NULL;
3 some_random_boolean = f a l s e ;
4 UNLOCK(lock) ;

1 LOCK(lock) ;
2 i f (some_random_boolean) {
3 l o c a l = * ptr ;
4 }
5 UNLOCK(lock) ;

Eduardo José Gómez-Hernández IISWC 2022 October 16, 2021 22 / 22

INDEPENDENT VARIABLES

▶ During the possible window of execution time of the critical section, all
variables cannot be related on any way, even not giving information from one
to another

1 LOCK(lock) ;
2 ptr = NULL;
3 some_random_boolean = f a l s e ;
4 UNLOCK(lock) ;

1 LOCK(lock) ;
2 i f (some_random_boolean) {
3 l o c a l = * ptr ;
4 }
5 UNLOCK(lock) ;

Eduardo José Gómez-Hernández IISWC 2022 October 16, 2021 22 / 22

OVERHEAD SUMMARY

1 2 4 8 16 32 64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
.

E
xe

cu
ti

o
n

T
im

e

Eduardo José Gómez-Hernández IISWC 2022 October 16, 2021 22 / 22

	Overview
	Motivation
	Splash-3
	Splash-4
	LockFree and Atomics
	Critical Section Splitting
	Sense-Reversing Centralized Barrier
	Overview

	Evaluation
	Overhead Breakdown
	Top-Down
	Scalability
	64 Threads Summary

	Conclusions
	Appendix
	Questions?

