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OVERVIEW

I Programmers have always request the support of read-modify-write atomics
of several address

I Ideally multi-address atomics should be:
I fine-grained locking to enable concurrency
I non-speculative to prevent retries (re-executions/aborts)

I Our goal is:
I achieve both goals: fine-grained locking and non-speculative
I avoid deadlocks due to limited resources:

I Rely only on the coherence protocol and a predetermined locking order
I Outperform software locks (3.4×) and Intel transactional memory (2.7×)

I with just 68 bytes of extra storage per core
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MOTIVATION

I Atomic read-modify-write (RMW) instructions
I are the most efficient way to atomically update a variable

I Non-blocking algorithms
I rely on atomic RMW primitives
I commonly, the compare-and-swap(CAS) instruction

I In general, increase the scalability of commonly used data structures and
applications
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PREVIOUS WORK

A hardware implementation of the
MCAS synchronization primitive1

, MCAS table to setup the locks
/ A set of instructions fill the

structure, and later another one
start locking the stored addresses

/ Deadlocks due to resource
limitations or lack of
non-speculative solution.

Non-Speculative Store Coalescing in
Total Store Order2

, Limited resources are taken into
account

/ Atomic groups established
arbitrarily, on conflict atomic
groups are split

/ Atomic groups for atomic
operations are established by the
programmer and cannot be split

1Patel et al, In 2017 Design, Automation, and Test in Europe (DATE)
2Ros and Kaxiras, ISCA 45, 2018
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BACKGROUND: ADDRESS VERSUS LEXICOGRAPHICAL ORDER

I Typical solution Address Order1

Address
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

Memory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

1Dijkstra, EDW-310, E.W. Dijkstra Archive, Center for American History, 1971
2Ros and Kaxiras, ISCA 45, 2018
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MAD ATOMICS

I Lock-protected critical
sections

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);
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MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);
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MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics
I Decoded micro-ops

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a
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MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics
I Decoded micro-ops
I Out of Order execution

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a

t2 = lock a
t1 = lock b
t1++
t2++
unlock t1 b
unlock t2 a
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RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

c
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MAD ATOMICS: LEX REORDER UNIT (LEXOU)

Directory
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L1D
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DEADLOCKS

We have identified several deadlocks scenarios due to resource limitations:
I Private Cache
I Shared Cache
I Eviction Buffers
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DEADLOCKS: PRIVATE CACHE
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MAD atomics are limited to a maximum of 4 addresses
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DEADLOCKS: SHARED CACHE
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DEADLOCKS: SHARED CACHE

The set lock prevents multiple conflicts to clash in the same set
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DEADLOCKS: SHARED CACHE RUNNING SOLUTION
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DEADLOCKS: EVICTION BUFFERS
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DEADLOCKS: EVICTION BUFFERS
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DEADLOCKS: EVICTION BUFFERS
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DEADLOCKS: EVICTION BUFFERS
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We propose to enable in-situ replacements in this scenario
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EVALUATION: SIMULATOR

I Gem5-20 full system simulator

I Mimicking an Intel Skylake processor from 1 up to 64 cores

I Memory hierarchy and coherence protocol modeled with Ruby

I Execution and issue latencies modeled as measured on real hardware by
Fog1

1Fog, http://www.agner.org/optimize/instruction_tables.pdf, 2018
Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 15 / 20
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EVALUATION: BENCHMARKS

I Commonly used concurrent data structures and some parallel applications

I Critical sections can be translated to two categories:
I multi-address atomic operations
I multi-address compare-and-swap (MCAS) operations
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EVALUATION: RESULTS
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CONCLUSION

I New efficient, more flexible, non-speculative, deadlock-free multi-address
(MAD) atomic operations.

I Avoid deadlocks due to limited resources relying only on the coherence
protocol and a predetermined locking order

I Performance is increased:
I 3.4× on average against software locks
I 2.7× on average compared to TSX
I In general improving scalability from one core (software locks) up to 16 cores.
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