
EFFICIENT, DISTRIBUTED, AND NON-SPECULATIVE

MULTI-ADDRESS ATOMIC OPERATIONS

Eduardo José Gómez-Hernández1 Juan M. Cebrian1

Rubén Titos-Gil1 Stefanos Kaxiras2 Alberto Ros1

1Computer Engineering Department
University of Murcia, Spain

2Department of Information Technology
Uppsala University, Sweden

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 1 / 20



OVERVIEW

I Programmers have always request the support of read-modify-write atomics
of several address

I Ideally multi-address atomics should be:
I fine-grained locking to enable concurrency
I non-speculative to prevent retries (re-executions/aborts)

I Our goal is:
I achieve both goals: fine-grained locking and non-speculative
I avoid deadlocks due to limited resources:

I Rely only on the coherence protocol and a predetermined locking order
I Outperform software locks (3.4×) and Intel transactional memory (2.7×)

I with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 2 / 20



OVERVIEW

I Programmers have always request the support of read-modify-write atomics
of several address

I Ideally multi-address atomics should be:
I fine-grained locking to enable concurrency
I non-speculative to prevent retries (re-executions/aborts)

I Our goal is:
I achieve both goals: fine-grained locking and non-speculative
I avoid deadlocks due to limited resources:

I Rely only on the coherence protocol and a predetermined locking order
I Outperform software locks (3.4×) and Intel transactional memory (2.7×)

I with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 2 / 20



OVERVIEW

I Programmers have always request the support of read-modify-write atomics
of several address

I Ideally multi-address atomics should be:
I fine-grained locking to enable concurrency
I non-speculative to prevent retries (re-executions/aborts)

I Our goal is:
I achieve both goals: fine-grained locking and non-speculative
I avoid deadlocks due to limited resources:

I Rely only on the coherence protocol and a predetermined locking order
I Outperform software locks (3.4×) and Intel transactional memory (2.7×)

I with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 2 / 20



OVERVIEW

I Programmers have always request the support of read-modify-write atomics
of several address

I Ideally multi-address atomics should be:
I fine-grained locking to enable concurrency
I non-speculative to prevent retries (re-executions/aborts)

I Our goal is:
I achieve both goals: fine-grained locking and non-speculative
I avoid deadlocks due to limited resources:

I Rely only on the coherence protocol and a predetermined locking order
I Outperform software locks (3.4×) and Intel transactional memory (2.7×)

I with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 2 / 20



OUTLINE

MOTIVATION

BACKGROUND

MAD ATOMICS

DEADLOCKS

EVALUATION

CONCLUSIONS

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 3 / 20



MOTIVATION

I Atomic read-modify-write (RMW) instructions
I are the most efficient way to atomically update a variable

I Non-blocking algorithms
I rely on atomic RMW primitives
I commonly, the compare-and-swap(CAS) instruction

I In general, increase the scalability of commonly used data structures and
applications

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 4 / 20



MOTIVATION

I Atomic read-modify-write (RMW) instructions
I are the most efficient way to atomically update a variable

I Non-blocking algorithms
I rely on atomic RMW primitives
I commonly, the compare-and-swap(CAS) instruction

I In general, increase the scalability of commonly used data structures and
applications

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 4 / 20



MOTIVATION

I Atomic read-modify-write (RMW) instructions
I are the most efficient way to atomically update a variable

I Non-blocking algorithms
I rely on atomic RMW primitives
I commonly, the compare-and-swap(CAS) instruction

I In general, increase the scalability of commonly used data structures and
applications

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 4 / 20



PREVIOUS WORK

A hardware implementation of the
MCAS synchronization primitive1

, MCAS table to setup the locks
/ A set of instructions fill the

structure, and later another one
start locking the stored addresses

/ Deadlocks due to resource
limitations or lack of
non-speculative solution.

Non-Speculative Store Coalescing in
Total Store Order2

, Limited resources are taken into
account

/ Atomic groups established
arbitrarily, on conflict atomic
groups are split

/ Atomic groups for atomic
operations are established by the
programmer and cannot be split

1Patel et al, In 2017 Design, Automation, and Test in Europe (DATE)
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 5 / 20



PREVIOUS WORK

A hardware implementation of the
MCAS synchronization primitive1

, MCAS table to setup the locks
/ A set of instructions fill the

structure, and later another one
start locking the stored addresses

/ Deadlocks due to resource
limitations or lack of
non-speculative solution.

Non-Speculative Store Coalescing in
Total Store Order2

, Limited resources are taken into
account

/ Atomic groups established
arbitrarily, on conflict atomic
groups are split

/ Atomic groups for atomic
operations are established by the
programmer and cannot be split

1Patel et al, In 2017 Design, Automation, and Test in Europe (DATE)
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 5 / 20



BACKGROUND: ADDRESS VERSUS LEXICOGRAPHICAL ORDER

I Typical solution Address Order1

Address
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

Memory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

1Dijkstra, EDW-310, E.W. Dijkstra Archive, Center for American History, 1971
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 6 / 20



BACKGROUND: ADDRESS VERSUS LEXICOGRAPHICAL ORDER

I Typical solution Address Order1

I Address order does not take into
account some hardware structures
like the cache

Address
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

CacheMemory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

1Dijkstra, EDW-310, E.W. Dijkstra Archive, Center for American History, 1971
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 6 / 20



BACKGROUND: ADDRESS VERSUS LEXICOGRAPHICAL ORDER

I Typical solution Address Order1

I Address order does not take into
account some hardware structures
like the cache

I Lexicographical Order2

Address
Order

Lexicographical
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

EB
AF
D

GC

0
1
2
3

Cache

LexOrder = CacheLine Address % Cache Sets

Memory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

1Dijkstra, EDW-310, E.W. Dijkstra Archive, Center for American History, 1971
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 6 / 20



BACKGROUND: ADDRESS VERSUS LEXICOGRAPHICAL ORDER

I Typical solution Address Order1

I Address order does not take into
account some hardware structures
like the cache

I Lexicographical Order2

Address
Order

Lexicographical
Order

A
B
C
D
E
F
G

0
1
2
3
4
5
6

EB
AF
D

GC

0
1
2
3

Cache

LexOrder = CacheLine Address % Cache Sets

Lex Conflict

Memory

A 0x0040
B 0x0100
C 0x01C0
D 0x0280

E 0x4100
F 0xC040
G 0xC0C0

1Dijkstra, EDW-310, E.W. Dijkstra Archive, Center for American History, 1971
2Ros and Kaxiras, ISCA 45, 2018

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 6 / 20



MAD ATOMICS

I Lock-protected critical
sections

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 7 / 20



MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 7 / 20



MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics
I Decoded micro-ops

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 7 / 20



MAD ATOMICS

I Lock-protected critical
sections

I Single instructions
multi-address atomics
I Decoded micro-ops
I Out of Order execution

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a

t2 = lock a
t1 = lock b
t1++
t2++
unlock t1 b
unlock t2 a

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 7 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c
c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



RUNNING EXAMPLE

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c
c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 8 / 20



MAD ATOMICS: LEX REORDER UNIT (LEXOU)

Directory

LLC

Fetch
Decode

Rename

R
O

B

In
st

. 
Q

u
e
u
e

FU
UnitsLSU

Register
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 9 / 20



MAD ATOMICS: LEX REORDER UNIT (LEXOU)

Directory

LLC

Fetch
Decode

Rename

R
O
B

In
st
.
Q
u
e
u
e

FU
UnitsLSU

LexOURegister
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

LexOU
Logic

Lock Queue

Ad
dr

Co
un
te
r

Lo
ck

Hi
t

Co
nfl
ict I Lexicographical reOrder Unit

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 9 / 20



MAD ATOMICS: LEX REORDER UNIT (LEXOU)

Directory

LLC

Fetch
Decode

Rename

R
O
B

In
st
.
Q
u
e
u
e

FU
UnitsLSU

LexOURegister
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

LexOU
Logic

Lock Queue

Ad
dr

Co
un
te
r

Lo
ck

Hi
t

Co
nfl
ict

I Lexicographical reOrder Unit
I Extra bit at each set of the directory

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 9 / 20



MAD ATOMICS: LEX REORDER UNIT (LEXOU)

Directory

LLC

Fetch
Decode

Rename

R
O

B

In
st

. 
Q

u
e
u
e

FU
UnitsLSU

LexOURegister
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

LexOU
Logic

Lock Queue

Addr
Cou

nte
r

Lo
ck

Hit Con
fli

ct

I Lexicographical reOrder Unit
I Extra bit at each set of the directory
I Load_locked & Store_unlock

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 9 / 20



DEADLOCKS

We have identified several deadlocks scenarios due to resource limitations:
I Private Cache
I Shared Cache
I Eviction Buffers

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 10 / 20



DEADLOCKS: PRIVATE CACHE

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

MAD atomics are limited to a maximum of 4 addresses

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 11 / 20



DEADLOCKS: PRIVATE CACHE

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

MAD atomics are limited to a maximum of 4 addresses

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 11 / 20



DEADLOCKS: PRIVATE CACHE

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

MAD atomics are limited to a maximum of 4 addresses

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 11 / 20



DEADLOCKS: PRIVATE CACHE

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

MAD atomics are limited to a maximum of 4 addresses

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 11 / 20



DEADLOCKS: SHARED CACHE

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 12 / 20



DEADLOCKS: SHARED CACHE

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 12 / 20



DEADLOCKS: SHARED CACHE

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 12 / 20



DEADLOCKS: SHARED CACHE

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 12 / 20



DEADLOCKS: SHARED CACHE

The set lock prevents multiple conflicts to clash in the same set

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 12 / 20



DEADLOCKS: SHARED CACHE RUNNING SOLUTION

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 13 / 20



DEADLOCKS: SHARED CACHE RUNNING SOLUTION

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 13 / 20



DEADLOCKS: SHARED CACHE RUNNING SOLUTION

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 13 / 20



DEADLOCKS: SHARED CACHE RUNNING SOLUTION

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 13 / 20



DEADLOCKS: SHARED CACHE RUNNING SOLUTION

Core

0

Private Cache

Directory
a
b

b

b'
c

b' b
a

a

c

b'

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 13 / 20



DEADLOCKS: EVICTION BUFFERS

Core

0

Private Cache

Lock Queue

Private Cache

Lock Queue

Core

1
a a'
b

a

Directory

A
B
C
D

Private Cache

Lock Queue

Core

2b'

a'

Eviction
Buffers

b''

b''

b'''

b'''
a a'

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 14 / 20



DEADLOCKS: EVICTION BUFFERS

Private Cache

Lock Queue

Private Cache

Lock Queue

Directory

Private Cache

Lock Queue

Core

0
Core

1
a a'
b

a

a
A
B
C
D

Core

2b'

a'

a'

a'' a'''

a'' a'''

b''

b''

b'''

b'''

1

23

4 Eviction
Buffers

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 14 / 20



DEADLOCKS: EVICTION BUFFERS

Private Cache

Lock Queue

Private Cache

Lock Queue

Directory

Private Cache

Lock Queue

Core

0
Core

1
a a'
b

a

a
A
B
C
D

Core

2b'

a'

a'

a'' a'''

a'' a'''

b''

b''

b'''

b''' ✘
✘

1 1

2
2

3 Eviction
Buffers

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 14 / 20



DEADLOCKS: EVICTION BUFFERS

Private Cache

Lock Queue

Private Cache

Lock Queue

Directory

Private Cache

Lock Queue

Core

0
Core

1
a a'
b

a

a
A
B
C
D

Core

2b'

a'

a'

a'' a'''

a'' a'''

b''

b''

b'''

b''' ✘
✘

1 1

2
2

3 Eviction
Buffers

We propose to enable in-situ replacements in this scenario

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 14 / 20



EVALUATION: SIMULATOR

I Gem5-20 full system simulator

I Mimicking an Intel Skylake processor from 1 up to 64 cores

I Memory hierarchy and coherence protocol modeled with Ruby

I Execution and issue latencies modeled as measured on real hardware by
Fog1

1Fog, http://www.agner.org/optimize/instruction_tables.pdf, 2018
Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 15 / 20

http://www.agner.org/optimize/instruction_tables.pdf


EVALUATION: BENCHMARKS

I Commonly used concurrent data structures and some parallel applications

I Critical sections can be translated to two categories:
I multi-address atomic operations
I multi-address compare-and-swap (MCAS) operations

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 16 / 20



EVALUATION: RESULTS

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0

2.0

4.0

6.0

8.0

10.0

BSTree Deque HashMap MWObject Queue Stack

S
pe

ed
up

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

Bitcoin Water-NS Water-SP Intruder Geomean

S
pe

ed
up

Mutex Lock

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 17 / 20



EVALUATION: RESULTS

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0

2.0

4.0

6.0

8.0

10.0

BSTree Deque HashMap MWObject Queue Stack

S
pe

ed
up

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

Bitcoin Water-NS Water-SP Intruder Geomean

S
pe

ed
up

Mutex Lock Lock-Free

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 17 / 20



EVALUATION: RESULTS

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0

2.0

4.0

6.0

8.0

10.0

BSTree Deque HashMap MWObject Queue Stack

S
pe

ed
up

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

Bitcoin Water-NS Water-SP Intruder Geomean

S
pe

ed
up

Mutex Lock Lock-Free TSX

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 17 / 20



EVALUATION: RESULTS

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0

2.0

4.0

6.0

8.0

10.0

BSTree Deque HashMap MWObject Queue Stack

S
pe

ed
up

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

Bitcoin Water-NS Water-SP Intruder Geomean

S
pe

ed
up

Mutex Lock Lock-Free TSX MAD Atomics

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 17 / 20



EVALUATION: RESULTS

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264

0.0
0.2
0.4
0.6
0.8
1.0
1.2

BSTree Deque HashMap MWObject Queue Stack

28
.5

5
26

.6
2

13
.3

6
6.

73
1.

69

9.
03

8.
31

7.
21

6.
61

2.
55

1.
27

N
or

m
.

C
om

m
itt

ed
In

st
s.

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bitcoin Water-NS Water-SP Intruder Geomean

1.
72

3.
1

2.
12

1.
29

N
or

m
.

C
om

m
itt

ed
In

st
s.

Lock-Free TSX MAD Atomics

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 18 / 20



CONCLUSION

I New efficient, more flexible, non-speculative, deadlock-free multi-address
(MAD) atomic operations.

I Avoid deadlocks due to limited resources relying only on the coherence
protocol and a predetermined locking order

I Performance is increased:
I 3.4× on average against software locks
I 2.7× on average compared to TSX
I In general improving scalability from one core (software locks) up to 16 cores.

with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 19 / 20



CONCLUSION

I New efficient, more flexible, non-speculative, deadlock-free multi-address
(MAD) atomic operations.

I Avoid deadlocks due to limited resources relying only on the coherence
protocol and a predetermined locking order

I Performance is increased:
I 3.4× on average against software locks
I 2.7× on average compared to TSX
I In general improving scalability from one core (software locks) up to 16 cores.

with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 19 / 20



CONCLUSION

I New efficient, more flexible, non-speculative, deadlock-free multi-address
(MAD) atomic operations.

I Avoid deadlocks due to limited resources relying only on the coherence
protocol and a predetermined locking order

I Performance is increased:
I 3.4× on average against software locks
I 2.7× on average compared to TSX
I In general improving scalability from one core (software locks) up to 16 cores.

with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 19 / 20



CONCLUSION

I New efficient, more flexible, non-speculative, deadlock-free multi-address
(MAD) atomic operations.

I Avoid deadlocks due to limited resources relying only on the coherence
protocol and a predetermined locking order

I Performance is increased:
I 3.4× on average against software locks
I 2.7× on average compared to TSX
I In general improving scalability from one core (software locks) up to 16 cores.

with just 68 bytes of extra storage per core

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 19 / 20



EFFICIENT, DISTRIBUTED, AND NON-SPECULATIVE

MULTI-ADDRESS ATOMIC OPERATIONS

Eduardo José Gómez-Hernández1 Juan M. Cebrian1

Rubén Titos-Gil1 Stefanos Kaxiras2 Alberto Ros1

eduardojose.gomez@um.es

Thank you for your attention!

ECHO, ERC Consolidator Grant (No 819134)
Vetenskapsradet project 2018-05254 and EPEEC (No 801051)

This presentation and recording belong to the authors. No distribution is allowed without the authors’ permission.

Eduardo José Gómez-Hernández MICRO-54 (2021) October 16, 2021 20 / 20


	Overview
	Motivation
	Background
	MAD Atomics
	Deadlocks
	Evaluation
	Conclusions
	Appendix
	Questions?


