
In-core best-effort transactional
memory with lex order locking

Máster Universitario en Nuevas
Tecnologías en Informática

Trabajo Fin de Máster

Author:
Álvaro Rubira García
Advisors:
Alberto Ros Bardisa
Eduardo José Gómez Hernández

2 de Julio de 2025

Acknowledgements

I would like to thank Alberto Ros for his patience in repeatedly explaining some of the most
complex topics in processor architecture, and Eduardo José Gómez for his continued encour-
agement and guidance during this project. Their combined ideas and advice across many
meetings were invaluable and made this work possible. I must also thank Juan Manuel Ce-
brián for helping me understand the intricacies of simulating computer systems with gem5
and for offering additional ideas and optimizations for the implementation. Lastly, I would
like to thank all of our colleagues at the Computer Architecture & Parallel Systems Research
Group for their support. They have all been incredibly kind and helpful in spite of their limited
time.

Abstract
Parallel algorithms are fundamental for taking advantage of the multiple cores available in
current processors. Synchronization is necessary for coordinating work through shared mem-
ory. Transactional memory provides a simple alternative for synchronization, such that the
programmer defines atomic transactions and the transactional memory system manages the
underlying interleaving of threads.

With hardware transactional memory (HTM), processors explicitly incorporate modifica-
tions that enable efficient execution of transactions. Processors speculatively execute trans-
actions in parallel while activating a conflict detection system. Upon detecting risks that
compromise transaction atomicity, they are resolved by only allowing one of the conflicting
transactions to proceed, possibly aborting the other. Aborted transactions need to restore the
pre-transaction processor state before either retrying execution or taking a fallback path that
ensures forward progress.

Commonly, HTM systems require additional hardware, such as register checkpoints for
restoring state in case of abort. We revisit an alternative implementation (initially proposed
for speculative lock elision) which buffers transactional execution in the reorder buffer (ROB),
taking advantage of existing mechanisms for version management and conflict detection.

We could not find any previous performance evaluations of this alternative, likely because
it imposes strict limits on the length and complexity of transactions. However, an HTM
that only supports small transactions can still ease the task of programming many parallel
algorithms.

In this work, we implement an HTM system that requires minimal modifications to the
processor, based on buffering instructions in the ROB. On top of this baseline, we test a
mechanism for locking cache lines in a non-deadlocking lexicographical order (lex order).
Transactions can activate locks in cache lines, which will delay external conflicting requests,
to improve their chances of committing.

We test both versions in the gem5 simulator and execute several benchmarks, mainly fo-
cused on concurrent data structures. Our HTM introduces low overhead, with locking in lex
order significantly reducing the number of aborts (by 30% for 32 cores on average) and always
resulting in equal or better performance than the baseline HTM.

v

Resumen extendido
Estado del arte El rendimiento de los procesadores mononúcleo se ha ido estancando
desde principios de la década de los 2000. Consecuentemente, para seguir mejorando las
nuevas generaciones, los fabricantes se han decantado por diseñar chips con más núcleos de
propósito general o con arquitecturas especializadas. Los procesadores multinúcleo pueden
ejecutar a la vez varios hilos que se comunican entre sí utilizando memoria compartida. Esta
comunicación es necesaria en muchos algoritmos que no son trivialmente paralelizables. Para
evitar carreras de datos al comunicar el progreso entre hilos, se necesitan mecanismos de
sincronización.

Una forma común y sencilla de sincronización es el uso de cerrojos de grano grueso, que
consiste en utilizar un único cerrojo para crear una exclusión mutua al acceder a los datos
compartidos. En muchas ocasiones, esta forma de sincronización genera una serialización
innecesaria de los accesos. Como alternativa, se pueden crear varios cerrojos asociados a
partes de las estructuras de datos que se pueden acceder en paralelo. Los algoritmos que
utilizan estos cerrojos de grano fino tienen que adquirirlos en un orden que evite deadlocks.

Los algoritmos que utilizan cerrojos son vulnerables a las latencias generadas por el pla-
nificador de procesos del sistema operativo. Los hilos pueden dejar de ejecutar instrucciones
(pueden ser bloqueados) mientras se encuentran ejecutando la sección crítica de un cerro-
jo. Como consecuencia, previenen el progreso del resto de hilos que necesiten acceder a la
sección crítica, lo que puede llegar a bloquear el progreso del programa al completo.

Internamente, los cerrojos suelen ser programados con instrucciones atómicas, que permi-
ten realizar varias acciones (read-modify-write) atómicamente. Estas instrucciones atómicas
se pueden utilizar individualmente, fuera de los cerrojos, para crear estructuras lock-free, que
garantizan el progreso del programa mientras al menos un hilo (cualquiera) consiga ejecu-
tar instrucciones. El diseño de algoritmos lock-free (y, generalmente, el uso meticuloso de
operaciones atómicas en vez de cerrojos) suele ser mucho más complejo que las alternati-
vas bloqueantes, pero promete un mejor rendimiento. Este beneficio se maximiza cuando un
número elevado de hilos compite por acceder a recursos compartidos (contención).

Así, se dispone de varias técnicas de sincronización con diferentes niveles de rendimiento
esperado y diferentes niveles de complejidad. La memoria transaccional obtuvo reconoci-
miento como un nuevo mecanismo de sincronización, más sencillo para el programador que
el resto de alternativas. Como concepto, la memoria transaccional permite programar con blo-
ques atómicos de varias instrucciones, llamados transacciones. La sincronización entre hilos
usando memoria transaccional únicamente requiere delimitar las transacciones, y el mecanis-
mo subyacente se encarga de conseguir ejecutar las transacciones de manera que aparenten
ser atómicas.

vii

viii

Para implementar este mecanismo de forma eficiente con soporte hardware, los procesa-
dores ejecutan transacciones de forma paralela mientras activan un sistema de detección de
conflictos. Al detectar riesgos que puedan comprometer la atomicidad de las transacciones
(es decir, situaciones donde dos transacciones en vuelo acceden a la misma dirección y al
menos una escribe), el procesador abortará la ejecución de una de ellas para solucionar el
conflicto (comúnmente se aborta la transacción que accedió primero a la dirección de memo-
ria). Por tanto, es posible encontrar un conjunto de transacciones que se reintenten y generen
conflictos constantemente de tal manera que el programa nunca progrese. Para asegurar que
las transacciones se acaben completando, muchos sistemas requieren un camino alternativo,
normalmente con cerrojos convencionales de grano grueso. Este tipo de memoria transac-
cional permite intentar conseguir un rendimiento similar al de cerrojos de grano fino con un
código más simple.

Propuesta En este trabajo implementamos un mecanismo de memoria transaccional hard-
ware (HTM) que requiere pocas modificaciones al hardware existente de un procesador de
propósito general, centrándonos en asegurar un alto rendimiento para transacciones cortas.

Una de las partes más complejas de las implementaciones de memoria transaccional es
conseguir contener el estado especulativo y revertirlo en caso de conflicto. Seguimos uno de
los métodos descritos en speculative lock elision para este propósito. En concreto, en lugar de
añadir hardware dedicado a realizar copias de respaldo de los registros, empleamos hardware
ya existente que los procesadores necesitan para técnicas de ejecución especulativa.

Los procesadores con ejecución fuera de orden mantienen los resultados de las instruc-
ciones ejecutadas en un reorder buffer (ROB). Estos resultados especulativos solamente se
guardan en los registros reales cuando las instrucciones hacen commit en la cabeza del ROB,
cuando son la instrucción especulativa más antigua. Se puede conseguir soporte para la eje-
cución especulativa (por ejemplo, debido a la predicción de saltos o de dependencias de me-
moria) descartando los resultados de predicciones erróneas antes de que hagan commit. Este
mismo mecanismo se puede reutilizar para descartar y reintentar transacciones. Es necesario
mantener la transacción al completo en el ROB, lo cual se puede conseguir bloqueando la
cabeza del ROB hasta que la transacción al completo esté preparada para hacer commit.

La transacción solamente estará lista para hacer commit cuando todas sus instrucciones
se hayan ejecutado y los bloques que se acceden estén en la caché de primer nivel. Durante
esta fase de commit, las instrucciones ejecutadas aplican sus modificaciones en los registros
y las escrituras pueden acceder a memoria. Para hacer el proceso de escritura atómico, se
activan cerrojos (cerrojos sobre líneas de caché, distintos de los cerrojos convencionales) en
la caché de primer nivel sobre los bloques con escrituras pendientes. El procesamiento de las
peticiones externas a direcciones con cerrojos es pospuesto hasta que se libere el cerrojo.

Los bloques leídos durante la transacción se copian a la caché de primer nivel al ejecutar
todas las instrucciones de lectura. Los bloques que son escritos se deben obtener ejecutando
prefetches, que buscan el bloque con antelación.

Asimismo, para la detección de conflictos utilizamos hardware ya presente en los procesa-
dores, lo que evita la necesidad de soporte adicional para marcar líneas de caché accedidas

ix

durante transacciones. La caché de primer nivel manda notificaciones al procesador cuan-
do sus bloques son invalidados. Para dar soporte a la ejecución especulativa de lecturas, el
procesador descarta toda ejecución especulativa que dependa de lecturas que accedan a dicho
bloque. A este mecanismo ya existente, se debe añadir soporte para detectar la pérdida de per-
misos de escritura en bloques que no son invalidados, mandando notificaciones al procesador
cuando esto ocurra. Al comparar todas las notificaciones con las direcciones de los bloques
escritos en la transacción, que se encuentran en la store queue, se termina de obtener un mé-
todo para detectar todas las peticiones externas que entran en conflicto con la transacción
actual.

Si se detecta un conflicto con un bloque que solamente se ha escrito, solamente es nece-
sario volver a ejecutar los prefetches transaccionales que lo necesiten. Para las lecturas, sin
embargo, se debe descartar todo el estado especulativo de la transacción. Antes de cada re-
intento, incluimos un periodo de espera (backoff) aleatorio para intentar mitigar el livelock
entre hilos.

Este sistema presenta varias limitaciones de capacidad que se aplican a las transacciones (a
cambio, obtenemos una implementación más simple y eficiente). Todas las lecturas y escritu-
ras de las transacciones deben caber en la load queue y store queue para poder ser comparadas
rápidamente con las notificaciones entrantes. En general, todas las instrucciones de la transac-
ción deben poder ser guardadas a la vez en el ROB sin agotar la capacidad de las estructuras
del procesador.

Sobre este sistema base de HTM, añadimos un mecanismo que permite activar cerrojos en
líneas de caché antes del inicio de la etapa de commit de la transacción para evitar reintentos.
Con el objetivo de evitar deadlocks entre procesadores, los cerrojos de líneas de caché sola-
mente se pueden activar siguiendo un lexicographical order (lex order) conocido por todos
los procesadores. Este lex order depende de la capacidad y asociatividad de las estructuras
de la jerarquía de memoria, y permite evitar deadlocks tanto en estructuras privadas (cachés
privadas) como compartidas (cachés compartidas y directorios sparse).

La creación de cerrojos de memoria en lex order se presentó anteriormente en el artículo
“Efficient, distributed, and non-speculative multi-address atomic operations”. A diferencia de
los multi-address atomics, nuestro mecanismo empieza a adquirir cerrojos antes de que todas
las direcciones de memoria de la transacción sean conocidas. Cuando se conocen nuevas
direcciones de memoria, puede que algunos cerrojos tengan que ser readquiridos en el orden
correcto para mantener una secuencia en lex order.

Evaluación Para medir la eficacia de nuestra propuesta, la implementamos en el simula-
dor gem5. Empleamos el modelo full-sytem para la arquitectura x86-64. Utilizamos Ruby y
SLICC para modelar detalladamente los controladores de memoria. De esta manera, conse-
guimos simular un procesador moderno con un número variable de núcleos (desde 1 a 32).

En cuanto a benchmarks, comenzamos simulando la ejecución de varias cargas de trabajo
con estructuras de datos concurrentes. Simulamos operaciones sobre un array (intercambio
atómico de elementos), una lista ordenada, un hash map, una deque, una stack, una queue y un
árbol de búsqueda binario. En arrayswap, deque, stack y queue, cada una de las operaciones se

x

puede integrar de forma sencilla dentro de una única transacción. Para la lista, el hash map y el
árbol de búsqueda binario no podemos utilizar una única transacción, pues sus operaciones
contienen bucles que podrían agotar los recursos de nuestra implementación. En su lugar,
empleamos transacciones que ejecutan un multi-address compare-and-swap, de manera que
cada operación puede necesitar varias transacciones cortas.

En estas pruebas con estructuras de datos concurrentes, comparamos algoritmos basados
en cerrojos de grano grueso, basados en la memoria transaccional base y basados en la me-
moria transaccional con lex order locking. Para las dos versiones basadas en HTM, también
probamos con variaciones que incrementan el backoff cuando se reintenta un prefetch exclu-
sivo.

Al comparar el tiempo de ejecución de cada alternativa, vemos que las dos versiones de
HTM son siempre superiores al uso de cerrojos. Además, la versión con lex order locking
es capaz de reducir el tiempo de ejecución notablemente en escenarios con alta contención
(donde hay una alta probabilidad de conflictos entre transacciones).

Otra estadística que recogemos es el número de aborts (veces que se ha tenido que reinten-
tar una transacción) dividido entre el número de transacciones completadas. La disminución
de esta métrica, a la vez que se mantiene o reduce el tiempo de ejecución, puede ser indicati-
va de un ahorro de energía, pues supone una reducción en el número de instrucciones que se
vuelven a ejecutar. Creemos que la adición de lex order locking puede mejorar la eficiencia
energética del sistema, ya que reduce el número de aborts hasta en un 30% para 32 cores.

Finalmente, probamos a incorporar nuestra memoria transaccional para simplificar sec-
ciones de código de los benchmarks en Splash-4. En Splash-4 se empleaban operaciones
atómicas compare-and-swap (CAS) en bucle, dada la ausencia de operaciones atómicas es-
pecializadas para coma flotante en x86. Estas operaciones se pueden simplificar con HTM.

Teniendo en cuenta las métricas globales de los benchmarks de Splash-4, la sustitución de
los bucles CAS por transacciones con nuestra implementación no genera un impacto percepti-
ble en el tiempo de ejecución. Por ello, creamos microbenchmarks en los que los procesadores
ejecutan continuamente estas operaciones, para comparar la eficiencia de nuestra propuesta
ante bucles CAS. Para la operación fetch-and-add double, HTM muestra una mejor escalabi-
lidad que los bucles CAS. Aunque en esta prueba solamente se accede a una línea de caché en
cada transacción, los cerrojos en líneas de caché consiguen evitar aborts (reduciendo así el
tiempo de ejecución) al empezar a adquirir cerrojos antes de que la fase de commit comience.
Para la operación atomic max, se consigue un rendimiento similar al del uso de bucles CAS.

Conclusiones y vías futuras En conclusión, hemos desarrollado un sistema de HTM
eficiente que requiere pocas modificaciones al procesador. A cambio, las transacciones so-
portadas adquieren limitaciones, con restricciones principalmente en su longitud y número
de líneas de caché accedidas. Sobre esta base, hemos incorporado un sistema que consigue
retrasar peticiones para reducir el número de aborts.

Como trabajo pendiente, destacamos la falta de un camino alternativo en el mecanismo
de HTM. En los benchmarks, el backoff y los cerrojos en lex order han sido los únicos en-
cargados de ayudar a mitigar livelocks. Hay varias soluciones posibles que no requieren la

xi

definición explícita de un camino alternativo. Principalmente, se puede modificar el método
de resolución de conflictos para que garantice el progreso, o incorporar mecanismos hardwa-
re que se activen tras un número finito de reintentos para asegurar las transacciones se acaban
completando.

Contents
1 Introduction and motivation 1

2 Background and related work 3
2.1 Out-of-order CPUs . 3

2.1.1 Reorder Buffer . 3
2.1.2 Load queue and store queue . 4
2.1.3 Cache coherence . 4
2.1.4 Speculative load execution . 5

2.2 Synchronization in shared memory . 6
2.2.1 Atomic operations . 6
2.2.2 Locks . 7
2.2.3 Lock-free algorithms . 8
2.2.4 MAD atomics and lex order . 8

2.3 Transactional memory . 9
2.3.1 Characterization of HTM implementations 9
2.3.2 Speculative Lock Elision . 11
2.3.3 Transactional-Execution Facility in the z/Architecture 11
2.3.4 CLEAR . 12
2.3.5 Constrained HTM with NACKs for forward progress 13

3 Objectives and methodology 15
3.1 Simulated system . 15
3.2 Benchmarks . 16

3.2.1 Data structures . 17
3.2.2 Microbenchmarks . 17

4 Design and implementation 21
4.1 begin and end instructions . 21
4.2 Buffering speculative state . 22
4.3 Misspeculation and squashes . 22
4.4 Loading required blocks into L1 . 23
4.5 Conflict detection and resolution . 24
4.6 Locking . 25
4.7 Transaction commit . 27
4.8 Exceptions and interrupts . 27

xiii

xiv CONTENTS

4.9 Limitations . 28

5 Evaluation 31
5.1 Data structure benchmarks . 31

5.1.1 Arrayswap . 32
5.1.2 Binary search tree, sorted list and hash map 32
5.1.3 Deque, queue and stack . 32

5.2 Microbenchmarks . 35

6 Conclusion and future work 37

Bibliography 39

Acronyms and abbreviations 43

List of Figures
2.1 Store buffer as part of the store queue. 4

4.1 Example showing a transaction being squashed after receiving a conflicting
invalidation. 25

4.2 Example showing locking in lex order as blocks are added to the read and
write sets of a transaction. 26

5.1 Summary of results for data structure benchmarks. 32
5.2 Normalized execution time in data structure benchmarks 33
5.3 Aborts per commit in data structure benchmarks 34
5.4 Normalized execution time in microbenchmarks 35
5.5 Aborts per commit in microbenchmarks 35

xv

List of Tables
3.1 Configuration parameters . 16

xvii

Listings
2.1 Pseudocode for reading and incrementing a counter 6

3.1 fetch-and-add with CAS loop . 18
3.2 atomic-max with CAS loop . 18
3.3 fetch-and-add with HTM . 18
3.4 atomic-max with HTM . 18

xix

1 Introduction and motivation
Prior to the time when single-core processor designs were unable to keep pace with Moore’s
law, better performance was mainly achieved by increasing clock speed and using very long
pipelines. As challenges with power dissipation appeared, processor designers have switched
to single-chip multiprocessors that achieve better energy efficiency.

To extract all available performance from multicores, many threads of execution have to
work together on the same problem. If the problem cannot be easily divided into indepen-
dent subtasks, communication and synchronization between threads (usually through shared
memory) is necessary.

Locks are a common way of achieving this synchronization. However, coarse-grained
locking can serialize large program sections, reducing the potential speedup of using mul-
tiple cores. Avoiding this usually involves fine-grained locking, which can complicate the
program. Complicated locking algorithms are especially susceptible to deadlock and live-
lock problems. In addition, locks imply scheduling problems (such as convoying or priority
inversion) that cannot be easily avoided [1].

There is also the possibility of directly using the read-modify-write atomic synchronization
mechanisms exposed by the processor’s instruction set architecture (ISA). These atomic op-
erations are the synchronization primitives used internally by most locks to provide a higher-
level abstraction for critical sections, but they can also be leveraged in an extremely fine-
grained fashion to write programs focused on achieving progress guarantees under contention.

This often comes at the cost of added complexity. In lock-based algorithms, all code in-
side the region protected by a lock can be made atomic to other users of the same lock. With
common read-modify-write atomic instructions, however, only specific simple operations
exposed by the ISA (e.g. fetch-and-add or compare-and-swap) can be done atomically. Con-
sequently, algorithms programmed with these atomic instructions are hard for even experts
to get right [2, 3].

The non-deterministic nature of parallel programs makes bugs notoriously difficult to find
and remedy. Moreover, at the advent of multicore processors many programmers were not
used to writing correct concurrent code [4].

Transactional memory (TM) appeared as a convenient alternative. TM is simpler even than
using locks from the programmer’s perspective: it only involves marking sections of code
(transactions) that should be executed atomically. The underlying TM system guarantees that
the execution of any transaction will appear to be atomic to other transactions [1]. This frees
the programmer from the task of managing the underlying synchronization of threads.

With hardware transactional memory (HTM), processors explicitly incorporate modifica-
tions that enable efficient execution of transactions. HTM offers the ease of use of TM com-

1

2 INTRODUCTION AND MOTIVATION

bined with performance comparable to fine-grained locking. As a tradeoff, the limited hard-
ware resources impose limits on transactions, mainly in the number of different cache lines
accessed.

Complexity limitations are not a problem for small transactions that briefly access a few
locations in memory. These are prevalent in concurrent data structures [5] and many other
parallel workloads. For this reason, it makes sense for processors to provide HTM even if it
only supports constrained transactions.

An advantage of reducing the scope of supported transactions is that the hardware imple-
mentation can be simplified. Indeed, in an effort to impose fewer restrictions in transactions,
recent HTMs have complex implementations, and can involve important changes to the cache
coherence protocol (which are to be avoided due to the extensive verification effort they re-
quire).

In this thesis, we implement an HTM optimized towards simplicity and performance in
small transactions, that requires few modifications to existing hardware. Additionally, we
propose a mechanism for reducing transaction aborts that does not require modifications to
the cache coherence protocol.

The rest of the document is organized as follows. Chapter 2 provides a necessary back-
ground on modern CPUs and HTM systems. Chapter 3 outlines the primary objectives of
our HTM proposal, as well as our simulation and evaluation setup. Chapter 4 describes the
implementation details of our system. Chapter 5 presents the results of the evaluation of our
proposal using several benchmarks. Finally, in Chapter 6 we present our conclusions and
suggest directions for future research.

2 Background and related work
The topic of HTM has been deeply researched over recent years. As a result, there exist many
alternatives that have different ways of interacting with the processor’s microarchitecture to
simulate atomicity. These systems have to take into account the mechanisms that optimize the
performance of modern processors, which we will review in section 2.1. Later, in section 2.2
we address the difficulty of using these shared-memory multiprocessors to create concurrent
algorithms. Lastly, in section 2.3 we summarize previous efforts towards HTM systems that
informed our implementation.

2.1 Out-of-order CPUs
Modern processors that optimize for performance do so at the cost of higher power dissipation
and more complexity. They can afford transistors for advanced features that aggressively
extract every bit of instruction-level parallelism from programs. Specifically, dynamically-
scheduled superscalar processors try to avoid stalls by executing instructions speculatively,
in an order that can be different from the one assumed by the programmer.

Some aspects of these processors are very relevant for our implementation, so it is worth-
while to dedicate the following sections to reviewing them in detail. It should be noted that
these features are specific to “mainstream” out-of-order processors, and although they are
certainly widespread, many alternatives exist.

2.1.1 Reorder Buffer
In out-of-order processors, only the front-end (the part that fetches instructions from memory,
decodes and “sends” them to where they wait until they are executed) and the commit stage
process instructions in-order. Execution can be done out-of-order, whenever the operands
and functional units required become available.

In the commit stage, results of instructions that might have executed out-of-order are writ-
ten to the register file and memory. This stage is done in-order to ensure that the sequence
of updates to architectural state is consistent with in-order execution, therefore maintaining
correctness even if some instructions were allowed to start executing early to improve perfor-
mance.

A reorder buffer (ROB), implemented as a circular queue [6], can be used for holding spec-
ulative results until they are committed, forwarding them to younger instructions if necessary.

3

4 BACKGROUND AND RELATED WORK

Un-committed store

st2 st1st4 st3st6 st5st7

Next to be writtenNext to commit

Store buffer

Committed store

Program order
Store queue

Figure 2.1: Store buffer as part of the store queue.

When an instruction is dispatched, it is assigned an entry at the tail of the queue. Instruc-
tions only commit and are removed from the ROB when they are the oldest uncommitted
instruction, that is, when they are the head of the queue.

Additionally, processors perform speculation by making a prediction on unavailable infor-
mation, creating speculative results in the ROB based on that prediction and invalidating and
re-executing the speculative actions once the information becomes available if the predic-
tion is resolved as wrong. For example, by predicting the outcome of a conditional branch,
younger instructions are fetched and can start executing speculatively before the conditional
branch is known to be taken or not.

To discard speculative state, entries in the ROB are marked as invalid, and will be treated as
no-ops by the rest of the pipeline, including the commit stage. This is commonly referred to
as squashing. Continuing with the conditional branch example, all ROB entries younger than
the branch are squashed after an incorrect prediction, and the fetch stage is set to continue at
the corrected program counter.

2.1.2 Load queue and store queue
The load queue (LQ) and store queue (SQ) are fundamental for handling correct out-of-order
execution of memory accesses. They are complex content-addressable memories that allow
quickly searching addresses against all in-flight loads or stores.

In addition to the ROB, load and store instructions are also added to the LQ and SQ, re-
spectively, on dispatch. Similarly to their behavior in the ROB, loads and stores are removed
from the LQ and SQ, respectively, on commit.

Although loads access memory when they execute (and can do so speculatively), stores are
only written to memory after they commit. This way, the processor emits writes in-order and
only for stores that are confirmed to be correct. The processor does not wait for each store to
complete when committing, and instead a store buffer (SB) holds pending committed stores.
Stores are removed from the SQ and added to the SB on commit. This is often optimized by
placing the SB immediately after the SQ in the same structure, as shown in Figure 2.1, and
modifying the index that signals the start of the SB instead of removing and inserting.

2.1.3 Cache coherence
The memory consistency model provides a contract between the users of a processor and the
team in charge of its implementation. It consists of precise rules that dictate the valid states

2.1. OUT-OF-ORDER CPUS 5

of the processor after executing loads and stores in shared memory. Knowing these rules,
programmers can create code that is correct under all possible valid states of the model. At
the same time, the strictness of these rules determines the leeway that chip designers have for
introducing optimizations in the processor, because optimizations are not allowed to modify
the behavior of the processor in ways that violate the model.

The cache‐coherence protocol simplifies the implementation of the memory‐consistency
model in processors with caches. Its purpose is to make caches functionally invisible from
the perspective of the processor, so that cores concurrently executing loads and stores seem
to be accessing a single unified memory [7]. The only perceivable effect of having caches
between the processor and main memory should be in the timing of accesses.

Most coherence protocols are invalidation-based, meaning that they invalidate old un-
updated versions of data before new versions are created by stores. MSI is a simple
invalidation-based protocol that implements the “single-writer/multiple readers” principle
with three possible states for each line in the first-level cache (we assume write-allocate write-
back caches): modified (block can be read and written, and is the only copy), shared (block
can be read and multiple copies can exist) and invalid (block is not present). When a proces-
sor tries to write to a line that is not in M state, it sends requests to other processors to get
the latest value of the block and invalidate other copies before transitioning to M and writing.
When a processor tries to read from a line in I state, it needs to transition into S by sending
requests that get the latest value for the block and change any private M line to S.

The MESI protocol adds an exclusive state for lines that have no shared copies and have
not been modified, eliminating coherence transactions for the common case of writing the
only copy of a block right after loading it [7]. More complex variations exist, with different
processor manufacturers favoring different approaches (e.g. MOESDIF for AMD64 [8]).

Requests can be sent through a shared bus that processors “snoop” to examine all coherence
requests, but for scalability it is more common to use a directory instead. The directory holds
state information for all copies of a cache line, and can be distributed, assigning a subset of
the cache lines to separate directories (e.g. one directory per bank of L3). Cache misses in
first-level caches send a message to the appropriate directory, which will in turn exchange
further point-to-point messages to make the block available.

Keeping state information for all main memory blocks can become unfeasible, so instead
sparse directories [9] are the most common option. Sparse directories function similarly to
caches, and keep state information only for the most recently active entries. All copies of a
block are invalidated when its state is evicted from its directory.

2.1.4 Speculative load execution
One of the restrictions set by the memory consistency model is dictating the valid ways that
a processor can reorder memory accesses. For example, the x86-TSO model [10] attempts to
describe the memory consistency model of x86 processors, and does not allow load instruc-
tions to be reordered with respect to other load instructions. Without speculation, this would
mean that if a load stalls when accessing memory due to a cache miss, subsequent loads (as

6 BACKGROUND AND RELATED WORK

well as all instructions that depend on them) would also have to stall, even if their target blocks
were present in the cache. In practice, x86 processors speculatively execute loads once their
effective address is calculated, without waiting for previous loads to complete.

If a load that is after a slower load in program order is allowed to speculatively execute first,
speculative execution is correct as long as, by the time the slower load completes, the value of
the block accessed by the faster load has not changed [11]. Instead of issuing additional loads
to compare the values of memory blocks each time a reordering is made, most processors opt
for a more efficient (although less precise) method to ensure that the block is not modified
by other processors: when a block is invalidated in the first level cache, the processor asso-
ciatively searches the LQ and preemptively squashes all uncommitted executed loads to that
block. This covers two possible scenarios:

1. The block was invalidated because another processor requested exclusive access before
writing to it. Unless the value to be written is the same as the current value of the block,
the block’s contents were going to change.

2. The block was invalidated due to the cache replacement policy, and it was not actually
being written by another processor. Still, the squash is made as if the block’s contents
were going to change, because once it leaves the cache the processor no longer receives
coherence messages that notify it of updates to the block.

2.2 Synchronization in shared memory
Although it was briefly addressed in the introduction, we will review the issue that TM, and
all other synchronization alternatives we cover, try to address: collaboration between threads
running on processors that operate in shared memory systems.

2.2.1 Atomic operations
We borrow a toy example of a counter from Herlihy et al. [1]. We can imagine a shared
counter, where threads can execute a function that reads the value of the counter and then
increments it. One might start by coding the body of the function as “return counter++;”.
The compiler then generates the machine instructions in Listing 2.1. r1 and r2 refer to private
registers in each processor, and counter is the value of the counter in memory.

Listing 2.1: Pseudocode for reading and incrementing a counter

1Step 1 -> r1 = counter
2Step 2 -> r2 = r1 + 1
3Step 3 -> counter = r2
4# r1 is used as return value

Multiple processors can execute the function at the same time, and steps from different
processors can interleave. One processor might execute step 1, then other processor executes

2.2. SYNCHRONIZATION IN SHARED MEMORY 7

step 1 as well, and then both processors finish executing the function. The end result is that,
although two processors tried to increment the counter, the new value of counter stored
in memory is counter + 1, and both processors return counter as the value they found in
memory.

Processors provide atomic operations to facilitate collaboration between threads. Atomic
operations can perform several actions in memory and guarantee that no other processors
modify or read the value while the atomic operation is taking place. The following are a few
examples included in many ISAs:

• test&set rDst, addr: Sets rDst to the value in addr, and stores 1 in addr.

• fetch&add rDst, rSrc, addr: Sets rDst to the value in addr and then stores rDst
+ rSrc in addr.

• cas rExpected, rNew, addr: Compare-and-swap (CAS), only stores rNew in addr if
the value in addr is rExpected, and modifies a register to indicate if the store took place
or not (e.g. the x86 implementation sets rExpected to the value in addr if the values
were different and nothing was stored).

As one might imagine from these examples, most atomic operations only perform a few
actions. fetch&add is enough for a correct implementation of the previous concurrent counter
example, but more complicated operations cannot be made thread-safe so easily.

2.2.2 Locks
Locks are a common solution to this problem. Locks can be implemented with a value in
memory that indicates if the lock is taken. Threads attempt to acquire the lock in a loop that
uses an atomic operation. Only threads that have acquired the lock can execute the critical
section, which accesses shared state.

We can now protect more elaborate structures, such as a doubly linked list, by using a single
lock. This is scheme is called coarse-grained locking, and introduces unnecessary serializa-
tion in many cases. For example, a single lock does not allow for concurrent insertions in
distant positions of the list that could be allowed to run in parallel without any unwanted side
effects.

As an alternative, multiple locks can be created, for example one lock per node in the list.
When inserting a new node, only the two adjacent nodes need to be locked, and disjointed
parts of the list can be modified at the same time. This is fine-grained locking.

Needing to acquire more than one lock means that deadlocks can appear when groups of
processors mutually need to wait for each other before progressing. The locking order in fine-
grained locks of complex structures has to be studied carefully to avoid indefinitely stalling the
program due to deadlocks. Locks can also result in other problems such as priority inversion
or convoying [1].

8 BACKGROUND AND RELATED WORK

Crucially, many algorithms using locks are blocking. If a thread stops executing instruc-
tions (e.g. because it gets descheduled by the OS) while holding a lock, it blocks the progress
of all other threads that need to acquire the lock. When a single thread stops executing, it can
potentially prevent the entire program from making progress.

2.2.3 Lock-free algorithms
Lock-free algorithms guarantee that if at least one thread manages to execute instructions
(even if all other threads are descheduled), regardless of which thread it is, it will eventually
make progress and complete its desired action.

Lock-freedom is achieved by using atomics to create non-blocking algorithms. The term
lock-free can be somewhat misleading: not all algorithms that use locks are blocking (there
are even specialized “lock-free locks” [12]), and poorly programmed algorithms that do not
use locks can be blocking. The defining property of lock-free programs is that someone will
make progress independently of however many other threads are blocked.

Non-blocking algorithms are often more complicated than the blocking alternatives. Lock-
free structures are programmed using CAS (or load linked/store conditional (LL/SC)). Intu-
itively, the simplest lock-free algorithm uses a shared pointer that holds a reference to a data
structure. Threads then modify private copies of the structure and try to write their progress
into the shared state by performing a CAS on the pointer, with the expected value being the
value of the pointer when the private copy was made, and the new value being the address
of the private copy [13]. If the CAS failed, the whole process (copying, modifying and per-
forming CAS) has to be retried. To improve the efficiency of this method, the copy and CAS
can be done for individual nodes or parts of the structure. However, complexity arises from
the restricting nature of atomic operations, as only one value in memory can be atomically
modified at a time.

2.2.4 MAD atomics and lex order
Atomic operations to more than one address have been proposed. Multi-address atomic oper-
ations (MAD atomics) [14] are of particular interest to our work. Processors with support for
MAD atomics can expose them through new instructions in the ISA, such as multi-address
compare-and-swap (MCAS). MCAS is a version of CAS generalized to more addresses, such
that expected and desired values have to be provided for all addresses, and desired values are
only stored if all addresses had their expected values.

To modify multiple memory addresses atomically, MAD atomics lock target cache lines.
Processing of external requests (e.g. invalidations) to a locked cache line is delayed while
the lock is active. Modern processors already have the ability to activate cache line locks
(referred to as “cache locking” by Intel [15] and “cacheable locks” by AMD [8]) but only
activate them for individual cache lines at a time, likely to avoid the complexity of having to
deal with deadlocks.

2.3. TRANSACTIONAL MEMORY 9

MAD atomics, however, activates multiple cache line locks in lexicographical order (lex
order) [16]. Lex order is a sub-address order that takes the limited capacity of the memory
hierarchy into account to avoid all deadlocks. Each cache line address is assigned a lex order
that is 𝑙𝑖𝑛𝑒_𝑎𝑑𝑑𝑟 mod (𝑠𝑒𝑡𝑠 × 𝑎𝑠𝑠𝑜𝑐) where sets and assoc are the number of sets and ways
of the structure with the smallest 𝑠𝑒𝑡𝑠 × 𝑎𝑠𝑠𝑜𝑐 (both need to be rounded down to the next
lower power of two). Thus, in a conventional system, the size of the lex order will be dictated
by the L1 cache: 6 bits for the index so it can be VIPT, and a common associativity such as
8-way results in 6 + 3 = 9 bits, so the lex order can be calculated as 𝑙𝑖𝑛𝑒_𝑎𝑑𝑑𝑟 mod 512.

In the face of MAD atomics where at most one cache line in the group of addresses has
a given lex order, locking in lex order is guaranteed to be deadlock-free because conflicting
operations will conflict in their minimum common lex order. For MAD atomics that involve
a set of cache lines where some have the same lex order, all the ways of the sets in shared
structures (directories and shared caches) that hold multiple of the target cache lines have to
be locked to guarantee deadlock-freedom [14]. That is, when locking multiple cache lines
with the same lex order in an atomic group, the first locking request will have to activate a
lock for its entire directory set. A dedicated lock bit can be added to each directory set to
allow locking all the entries atomically.

There are limitations on the set of addresses that can be locked at the same time in private
caches. Cache lines to be locked might belong to the same set, so the number of addresses
cannot be higher than the associativity of the first-level cache.

2.3 Transactional memory
The initial proposal for TM [17] tracks the memory accesses of all ongoing transactions while
speculatively executing them. The effects of each transaction are only made visible to other
threads (by modifying shared memory) after executing the whole transaction and checking
that there were no conflicts with concurrent memory accesses of other transactions. When a
conflict is found, the transaction aborts and must be retried.

While many software TM implementations have been developed, their performance over-
head makes general adoption difficult [18]. We will focus on HTM, which leverages hardware
support for a significant performance improvement.

Before going over some implementations that are the most similar or related to ours, we
will start by explaining the categorization of common alternatives for HTM. This will aid in
understanding the family of HTM implementations that are the focus of this work: systems
that take advantage of existing speculation hardware for providing HTM with eager conflict
detection and lazy version management.

2.3.1 Characterization of HTM implementations
Approaches to HTM have mainly been characterized by how they manage concurrency con-
trol, conflict detection and version management [4].

10 BACKGROUND AND RELATED WORK

Concurrency control

In shared memory systems, conflicts occur when transactions perform operations that break
the illusion of atomicity, that is, when they overwrite or read the value written by another
ongoing transaction. Concurrency control determines how the system avoids committing
conflicting operations.

In optimistic concurrency control, the conflict is detected once the conflicting operation
has happened, and requires some form of conflict resolution, usually by aborting one or all
of the conflicting transactions and undoing speculative state.

In pessimistic concurrency control, the conflict is detected before the conflicting action
is taken, and can be resolved by e.g. delaying the action. A form of pessimistic concurrency
control might place a memory lock on all locations accessed by a transaction before executing,
and other transactions that access the same addresses will have to wait if they find a memory
location locked.

Most recent research and commercial HTM systems employ optimistic concurrency con-
trol, which is often assumed by default, and thus more attention is given to choices made in
conflict detection and version management.

Conflict detection

Conflict detection usually refers to the timing of conflict detection on HTM with optimistic
concurrency control. It can be broadly characterized as eager, if conflicts are detected as
soon as they happen, or lazy if conflicts are only detected right before starting the transaction
commit stage.

Conflict detection also addresses the granularity of the mechanism that detects conflicts
in memory. Ideally, only accesses to the same bits in memory should cause conflicts. Many
HTMs, however, detect conflicts with cache line granularity, because their conflict detection
relies on the cache coherence protocol. As a consequence, accesses to different locations of
the same cache line may still trigger conflicts (false conflicts).

It is important to mention that most recent HTM systems display strong atomicity [19]
(atomicity not only between transactions, but also between transactions and non-transactional
code), because non-transactional accesses can also cause conflicts.

Version management

Version management dictates how the state modified by ongoing transactions is handled. Ver-
sion management can be eager or lazy. In both cases, two versions of the memory locations
written during a transaction are kept: one version with the value before the transactions and
another with the last value written in the transaction. This is done so that either the initial
values are kept if the transaction aborts, or the transactionally written values are persisted if
the transaction commits. The only difference is which version is stored in-place and which
one is stored somewhere else [20].

2.3. TRANSACTIONAL MEMORY 11

Transactions with eager version management write speculative state in-place, so commit is
faster as data to be committed is written in advance to shared memory. When a transactional
write is performed, the pre-transaction values can be stored in a separate redo-log.

Lazy version management, on the other hand, stores speculatively written state in a private
copy and only overwrites the real locations on commit.

2.3.2 Speculative Lock Elision
Presented by Rajwar and Goodman [21], speculative lock elision (SLE) detects lock acqui-
sitions and releases and tries to elide critical sections using HTM. Transactional execution
is attempted until elision is successful or a finite number of aborts is reached, and the lock
can be acquired as a fallback that resorts to the usual serializing execution of critical sections.
Processors attempting speculative execution start by checking that the lock is free to prevent
conflicts with a processor in the fallback path.

In addition to contributing the idea of automatic detection of locks, which allows transac-
tional execution of unmodified lock-based programs, they describe efficient mechanisms for
HTM. Essentially, SLE buffers speculative updates to memory by not letting stores exit the
SB until lock elision is validated, and two alternatives are proposed for buffering the architec-
tural register state: using the ROB (by not letting instructions commit until the transaction is
successful) or using a register checkpoint (instructions are free to commit, but stores are still
buffered in the SB).

Each alternative has its own method for detecting conflicts. If the ROB is used, in pro-
cessors with speculative load execution invalidations already send snoops to the core which
can be used for detecting conflicts by checking them against entries in the LQ and SQ. If the
register checkpoint is used, a bit is added to each block’s cache metadata that marks blocks
accessed during the transaction. This bit can then be checked to detect atomicity violations
when conflicting external requests are received.

Thus, in addition to not requiring dedicated hardware to quickly create a full backup of the
register file, the ROB alternative does not need to mark accessed blocks. Furthermore, the
register checkpoint alternative creates a backup of all registers at the start of the transaction,
many of which might not be overwritten during the transaction, meaning that many unnec-
essary backups are created (especially in small transactions). The ROB alternative requires
the least modifications to existing hardware and avoids creating unnecessary register backups,
but has the drawback of not being able to commit instructions until transaction commit starts.

In a later article, Rajwar and Goodman propose adding a timestamp-based conflict resolu-
tion mechanism to SLE [22]. It guarantees forward progress of the program in the face of any
number of conflicting processors without having to acquire the underlying lock.

2.3.3 Transactional-Execution Facility in the z/Architecture
IBM’s Transactional Execution Facility was introduced with the zEC12 processor. We are
particularly interested in its constrained transaction execution mode. Constrained transac-

12 BACKGROUND AND RELATED WORK

tions impose a series of limitations on transaction length and complexity, such as having a
maximum of 32 instructions, limiting the number of accessed cache lines or forbidding jumps
to lower PCs (hence forbidding loops and function calls) [23].

In exchange, constrained transactions that meet these requirements do not require a fallback
path and are guaranteed to eventually complete on their own. Not needing to provide a fallback
path eases the work of developers, and having a reliable way to ensure forward progress makes
these transactions more suitable for critical software such as operating systems.

To ensure forward progress, a combination of increasing backoff between retries and a
reduction of the size of the window of speculative execution are applied when transactions
keep aborting, and a message to temporarily stop all other CPUs from executing conflicting
instructions is used as a last resort [23].

2.3.4 CLEAR
Cacheline-locked executed Atomic Region (CLEAR) [24] monitors the first execution of atomic
regions (can be critical sections or transactions, no distinction is made), tracking the memory
addresses accessed and the immutability of the set of addresses. If the set is immutable, a
retry is guaranteed to access the same addresses. If the first speculative execution is aborted,
the next attempts take advantage of the information collected, adapting by choosing one of
several possible modes of execution.

As with all other alternatives covered in section 2.3, performance evaluation was only done
on a system that uses register checkpoints while speculatively retiring instructions, but a de-
sign that buffers speculative state in the ROB (in-core speculation) is also described. In the
version with in-core speculation, the first execution checks that the atomic region can finish
without exhausting the core’s resources (ROB and SQ entries, etc.), and goes straight into
fallback mode if the limits were reached. Otherwise, the following execution modes exist for
subsequent retries:

• Non-speculative with cache line locking: In the best-case scenario, the set of addresses
is immutable and can be locked in L1, so the addresses are locked in the same way as
MAD atomics before executing the atomic region without the need for conflict detec-
tion.

• Speculative with cache line locking: If the set might change but can be locked in L1,
locking is still done but conflict detection is active and the transaction might abort.

• Speculative retry: If the set cannot be locked or a speculative execution with cache line
locking aborted, the atomic region is attempted with conflict detection as in conven-
tional HTM, without cache line locking.

After too many retries, as a last resort, the lock of the critical section or a global HTM
fallback lock is taken.

2.3. TRANSACTIONAL MEMORY 13

2.3.5 Constrained HTM with NACKs for forward progress
Nagabhiru and Byrd [5] advocate for constrained transactions, for the main use-case of lock-
free programming with MCAS implemented through HTM. Similarly to constrained transac-
tions in z/Architecture’s HTM [23], they guarantee forward progress without the need of a
fallback path, but this time through a NACK-based approach.

Transactions can respond to a conflicting transactional request from a core with higher
core-ID with a NACK that aborts the requesting transaction. Needless to say, this method
requires the addition of NACK support to the cache coherence protocol. After a number of
retries, transactions can also NACK non-transactional accesses, which will have to be retried.

Additionally, some adjustments are made to increase performance, such as automatically
promoting transactional read requests to write requests after a number of retries (this targets
the specific access-pattern of MCAS) or increasing a linear back-off for multiple retries caused
by the same transaction.

3 Objectives and methodology
In the previous work referenced in section 2.3, there are alternatives that describe mecha-
nisms for transactional execution by buffering state in the ROB. However, none of them show
a performance evaluation of this option, ostensibly because the register checkpointing alter-
native does not impose such strict limits on transactions. In this work, we are interested in
exploring the effectiveness of the ROB buffering approach, targeting small transactions.

We also want to decrease the number of aborts and the possibility of livelocks in this al-
ternative. Previous work focuses on combining the usual requester-wins policy of HTM with
a requester-loses policy that ensures forward progress. In directory systems, requester-loses
policies require the addition of NACKs, which can complicate the cache coherence protocol.
Instead, we want to investigate the combination of HTM with previous efforts for atomic
operations to multiple cache lines, specifically cache line locking in lex order.

Therefore, this thesis has the following objectives:

1. Implement an HTM based on the ROB buffering version of SLE. That is, an HTM that
buffers speculative state in the ROB and uses existing mechanisms to detect atomicity
violations.

2. Create a variant of the HTM system that tries to reduce the number of aborts by acti-
vating cache line locks in lex order.

3. Evaluate the performance of the two variants in benchmarks for small transactions.

In the following sections, we first describe the simulation setup chosen to implement the
HTM. Later, we present the benchmarks used to perform the evaluation.

3.1 Simulated system
As prototyping our design in real hardware would be impractical, we implement it in a simu-
lator. gem5 [25, 26] is an open-source cycle-level simulator that has become the standard for
evaluating and exploring computer architecture designs. It is a modular simulator, allowing
simulation of many ISAs with several representative CPU models.

We choose to simulate gem5-24’s out-of-order CPU model in full-system mode for the
x86-64 ISA. We try to define a CPU similar to an Intel Alder Lake P core [27, 28] with the
parameters shown in Table 3.1. The memory subsystem is simulated with Ruby, as we need
a detailed model that allows modifying the coherence protocol. The directory design and

15

16 OBJECTIVES AND METHODOLOGY

Parameter Value
Pipeline width 8 fetch/6 decode/6 rename/12 dispatch/12 issue/8

commit
Physical registers 332 integer + 332 floating-point
ROB 512 entries
LQ 192 entries
SQ 114 entries
RAS 64 entries
Branch predictor TAGE-SC-L [30]
Memory dependence predictor Store sets [31]
Caches 64B line size, write-back, write-allocate, strictly in-

clusive
L1 instruction 32KiB, 8-way, 1-cycle latency
L1 data 48KiB, 12-way, 1-cycle latency
L2 1MiB, 16-way, 5-cycle round-trip latency
L3 Shared, 4MiB, 16-way, 17-cycle round-trip latency
Coherence MESI protocol with directory (embedded in L3, not

sparse), SimplePt2Pt interconnection

Table 3.1: Configuration parameters

cache latencies needed for Ruby in recent gem5 versions can be unrealistic when compared
with contemporary chips. Recent advances investigate the cause of this issue and incorporate
modifications that allow for a more accurate simulation [29]. Additionally, we could not find
an easy way to change the interconnection network in the three-level hierarchy to a more
reasonable topology, such as a crossbar, instead of an all-to-all point-to-point network. We
reserve the inclusion of these improvements for future work.

Regarding lex order, our system has a 48KiB 12-way L1D. Associativity is not a power of
two, so for calculating the range of the lex order we choose the next lower power of two [16].
Lex order range is therefore 64 𝑠𝑒𝑡𝑠 × 8 𝑤𝑎𝑦𝑠 = 512.

3.2 Benchmarks
In this section, we present the benchmarks for experimental evaluation of our HTM. We use
two categories of benchmarks. First, we evaluate the performance of our mechanism as a syn-
chronization primitive in concurrent data structures. Second, we employ targeted microbench-
marks to measure its performance as a substitute of small constructs where atomic operations
are commonly used.

When running each benchmark, we take a checkpoint right before starting the operations
and extract the simulation statistics (simulation time, number of aborts, …) when all threads
have completed. The statistics are averaged between 10 runs of the same benchmark. gem5

3.2. BENCHMARKS 17

is a deterministic simulator, so we introduce variability by adding different delays before
creating the checkpoint in each run.

3.2.1 Data structures
We evaluate our proposal in the benchmarks for concurrent data structures developed by
Kankava [32]. We incorporate the corrections suggested in [33]1. The benchmarks measure
the time taken to perform a set number of operations in the following structures:

• Arrayswap: Threads atomically swap two random elements of an array.

• Binary search tree: Threads perform a mix of insertions, deletions and lookups. The
tree is not automatically balanced.

• Sorted list: A mix of insertions, deletions and lookups to a doubly-linked sorted list.

• Hash map: A mix of insertions, deletions and lookups. All implementations define the
hash map as an array of lists.

• Deque, queue and stack: Insertions and deletions.

We omit mwobject, which was included in the original benchmarks [32], because we could
not obtain a small enough difference in statistics between runs, even when performing a high
number of operations.

Operations for arrayswap, deque, queue and stack only require a single transaction. How-
ever, algorithms for operations in the binary search tree, sorted list and hash map include
looping constructs. We cannot afford to include these loops inside transactions because they
could exhaust our HTM’s capacity limits. Instead, we employ fine-grained HTM that follows
the structure of MCAS-based versions of these data structures.

3.2.2 Microbenchmarks
We introduce two microbenchmarks for small critical sections outside of data structures, and
provide a real use case for the Splash-4 [34] benchmark suite. The Splash suite evaluates the
performance and scalability of multicore processors. Splash-4 is an updated version that intro-
duces atomic operations to replace small critical sections, and reduces the overhead of barrier
synchronization. Some atomic operations in Splash-4 had to be performed as a CAS-loop be-
cause dedicated atomics were not available [34]. Specifically, many processors do not have
dedicated fetch-and-add and atomic-max atomics for floating point values. In Splash-4, they
were implemented as shown in Listing 3.1 and Listing 3.2. atomic_compare_exchange_weak
is a wrapper for the underlying CAS operation of the processor, it sets addr to newValue on
success and oldValue to the current value in addr in case of failure.

1Source code is available at https://github.com/alvaro-r-g/data-structure-benchmarks.

https://github.com/alvaro-r-g/data-structure-benchmarks

18 OBJECTIVES AND METHODOLOGY

Listing 3.1: fetch-and-add with CAS loop

1 double oldValue = *addr;
2 double newValue;
3 do {
4 newValue = oldValue + increment;
5} while (!atomic_compare_exchange_weak(addr, &oldValue,

newValue));
6 return oldValue;

Listing 3.2: atomic-max with CAS loop

1 double oldValue = *addr;
2 do {
3 if (newValue <= oldValue) break;
4} while (!atomic_compare_exchange_weak(addr, &oldValue,

newValue));

Using HTM, we rewrite them as shown in Listing 3.3 and Listing 3.4. In Listing 3.4 we
introduce a check to avoid the overhead of creating a transaction if possible.

Listing 3.3: fetch-and-add with HTM

1 TM_BEGIN();
2 double oldValue = *addr;
3*addr = oldValue + increment;
4TM_END();
5 return oldValue;

Listing 3.4: atomic-max with HTM

1 if (newValue > *addr) {
2 TM_BEGIN();
3 if (newValue > *addr) *addr = newValue;
4 TM_END();
5}

The new versions are simpler and their correctness can be verified at a glance. Their effect
in the overall execution time of Splash-4, however, is negligible. We measured the Splash-4
benchmarks updated with the HTM constructs2 in gem5 and verified that, as these operations
are surrounded by long blocks of computation, they do not generate a perceivable effect on
execution time.

As an alternative, we create microbenchmarks to test their isolated performance. For
fetch-and-add, threads constantly try to atomically increase a shared counter. In atomic-max,

2The affected Splash-4 benchmarks are Ocean contiguous, Ocean non-contiguous, Water-NS and Water-SP.

3.2. BENCHMARKS 19

we initialize arrays with random elements for each thread, and threads perform atomic-max
between each element of their local array and a shared global maximum. Elements of the
arrays are chosen from a random function with an upper bound that increases with the index
of the array, in order to increase the frequency of updates to the global maximum.

Both microbenchmarks depict unrealistic scenarios. Atomics are expensive (in terms of
performance), and most well-written programs avoid performing them with this much fre-
quency. Still, we include them to show that the overhead introduced by our HTM is compa-
rable to atomics, and to test if the lex order locking mechanism is beneficial even in these
simple scenarios.

4 Design and implementation
We now describe the details of our HTM. Most of the tradeoffs and intricacies of the design
space were already studied in great detail by Rajwar [35], who characterized similar imple-
mentations. Our implementation can be thought of as equivalent to the SLE variant that
buffers speculative state in the ROB, without automatic detection of locks, and with an added
cache line locking mechanism for avoiding conflicts. It employs eager conflict detection and
lazy version management.

Our implementation’s behavior can be summarized in the following steps:

1. Transactions can start executing freely, but their micro-ops are not committed to ar-
chitectural state (and cannot modify shared memory) until transaction commit starts.
Transaction commit can only start when (1) all micro-ops are executed and ready to
commit and (2) all blocks that need to be accessed are present in L1 in their required
states. Meanwhile, speculative state is buffered in the ROB.

2. Blocks are loaded into L1 when loads and stores in the transaction are executed. Blocks
accessed by stores are fetched by exclusive prefetches generated on the execute stage.

3. Transactional blocks previously acquired by loads and store prefetches might be inval-
idated or lose write permissions due to requests from other processors. Some of these
requests can be delayed until the transaction is completed if the conditions explained
in section 4.6 are met. Otherwise, loads and exclusive prefetches need to be retried to
bring blocks back to their required state.

4. During transaction commit, the SQ and SB are drained of transactional stores. To make
the draining process atomic, blocks that have pending transactional stores are locked.

A more detailed breakdown of the system is provided in the following sections.

4.1 begin and end instructions
Our interface for defining transactional regions consists of two new instructions: begin and
end. An unused combination of opcode, prefixes and attributes is chosen for encoding the
instructions in machine code. As an alternative, the opcodes for XBEGIN and XEND from Intel’s
Transactional Synchronization Extensions (which are disabled in most processors[36]) can be
reused.

21

22 DESIGN AND IMPLEMENTATION

The front-end of x86 processors transforms complex CISC instructions into an internal
RISC representation, so each instruction (macro-op) is converted into one or more micro-ops.
For begin and end, each macro-op is decoded into only one micro-op of the same name. The
two micro-ops are also new and are added to the internal micro-op ISA.

Micro-ops between begin and end are marked as transactional in the ROB, LQ and SQ.
Other than being specially handled by the pipeline as transaction delimiters as explained in
the following sections, both begin and end behave like full memory barriers (like mfences), as
is the case for atomics in x86 [15]. Full memory barriers prevent younger memory micro-ops
from executing until the barrier reaches ROB head and the SB is empty. This simplifies the
design of our HTM, preventing unwanted interactions with memory operations from outside
the transaction.

4.2 Buffering speculative state
Micro-ops that are part of a transaction are buffered in the ROB. This is achieved by not com-
mitting the begin micro-op once it reaches ROB head until it is squashed or the transaction
commit stage starts. As micro-ops can only commit and retire in-order through the ROB head,
this effectively delays the whole transaction (and any other ROB instructions), and prevents
it from being committed to architectural state.

Consequently, transactional modifications to the cache are also delayed because stores only
access memory once they commit. Loads, on the other hand, access memory when they
execute, and can forward the speculatively loaded values to other micro-ops in the transaction
before the transaction commit stage starts.

4.3 Misspeculation and squashes
Conditional and unconditional branches can be executed in our transactions, which might
cause some instructions in the transaction to be squashed. Modern processors also perform
memory dependence prediction, so speculatively executed loads that are incorrectly predicted
to access a different memory address than previous stores can also cause squashes.

Depending on how the processor handles misspeculation, squashed instructions can con-
tribute towards reaching the capacity limits of the transaction. Specifically, removal of
squashed instructions can be done lazily or eagerly. If the processor implements lazy squash-
ing, instructions in the ROB are marked as squashed and can only be retired when they reach
the ROB head. Once a transaction starts executing, the ROB head is blocked by begin, so
squashed instructions can only retire if begin itself is squashed (during a transaction abort) or
if it commits (during transaction commit). Until squashed instructions are retired, they keep
occupying resources in the processor’s structures (ROB, LQ, SQ and register allocation table
(RAT)). Therefore, our implementation is more suited for processors with eager squashing,
which immediately free ROB entries upon misspeculation. Still, our implementation main-

4.4. LOADING REQUIRED BLOCKS INTO L1 23

tains the lazy squashing implemented in gem5, as we did not find any capacity issues with
the short transactions that we use.

4.4 Loading required blocks into L1

To make transactional execution atomic, all blocks that will be accessed during the transaction
need to be present in L1 before transaction commit starts. Blocks only accessed by loads need
to have any state other than I before the transaction commit begins. Blocks accessed by one
or more stores need to be in E or M state.

Loads already bring their required block into L1 when they execute. When stores execute,
on the other hand, they do not need to access the block they write to. However, many prefetch-
ing strategies have been researched and implemented for normal execution (not necessarily
transactional) that preemptively ask for the block to be loaded with write permissions in or-
der to prevent a cache miss once the store accesses memory after committing. Many modern
processors perform prefetches when stores commit [15], before the stores reach the head of
the SB. We generate an exclusive prefetch (it loads the block1 in E state) when transactional
stores execute.

Usually, prefetches can only affect performance, and not correctness of the program, and
as a result they can be discarded depending on the state of the block they find once they reach
the cache controller. For example, the exclusive prefetches that are available in gem5’s MESI
three-level protocol only attempt to acquire exclusive permission for a block if it was in I state.
They also do not need to notify the core once they succeed in loading the block.

In this case, however, exclusive prefetches for transactional stores need to complete for
the transaction to progress, so they should not be discarded and should eventually send a re-
sponse to the processor, notifying that the data block is ready. We have modified the cache
coherence protocol and cache controllers to support these special prefetches. Firstly, we in-
cluded a new type of coherence message, named Tx_PF_Store, that the core can send to the
L1 cache when requesting a transactional exclusive prefetch. Secondly, we created two new
intermediate states for cache blocks named Tx_PF_IE (invalid block waiting for exclusive per-
mission) and Tx_PF_SE (block in shared state waiting for exclusive permission), that are used
when the Tx_PF_Store reaches a block without exclusive permission in L1. Lastly, we mod-
ified the cache controller to send a notification back to the core once the data requested by
a Tx_PF_Store is ready in L1. When the core receives this response, it marks the exclusive
prefetch as completed.

1We keep saying “block”, but a load or store might have to access more than one block if it is an unaligned
access to a cache line boundary. Our implementation takes this into account. For example, exclusive prefetch
requests can generate multiple packets to load multiple cache lines.

24 DESIGN AND IMPLEMENTATION

4.5 Conflict detection and resolution
Conflicts appear in the process of loading blocks accessed during the transaction into L1.
Conflicts are detected by checking if L1 notifications of invalidations or losses of write per-
missions change transactionally accessed blocks from their required state. Any stores or loads
that required the block will request the block again. External requests that cause load or store
retries can come from other processors which may or may not be executing a transaction, so
our implementation provides strong atomicity [19].

In the case of stores, conflicts with external accesses are detected by searching the SQ
whenever notifications of invalidations or losses of write permissions are received by the
processor. Processors usually do not have any reason to be notified when they lose write
permissions for a cache line if the block is still valid, so this is a specific additional requirement
of our implementation that we include in the cache controllers. If there is a coincidence with
an executed transactional store, it needs to recover by re-sending its exclusive prefetch.

Loads are only affected by invalidation notifications. However, their recovery mechanism
is not so simple: in addition to retrying the load, any execution depending on the loaded
value (which was just invalidated) needs to be discarded to maintain atomicity. As explained
in subsection 2.1.4, CPUs already do this by default, triggering a full flush of the processor
pipeline in the case of Intel [37]. As an aside, a valid implementation of the mechanism that
searches the LQ to find loads affected by invalidations might skip the first entry of the LQ.
This entry contains the oldest uncommitted load, so there is no older load that it could have
speculatively overtaken. However, during transactions, this first entry also needs to be taken
into account.

gem5 models the retry of speculative loads by marking invalidated loads with a fault. When
this fault reaches the ROB head, it triggers an exception that flushes the pipeline and starts
re-executing from the PC of the invalidated load. In our implementation, this exception would
be triggered and handled during transaction commit, which would break the atomicity of the
process. To prevent this, we trigger an early processor flush whenever a transactional load is
marked with a fault. As the entire transaction is being buffered in the ROB, processor flushes
result in a complete transaction retry, which is similar to a transaction abort in conventional
HTM implementations.

Figure 4.1 shows an example of this situation. Initially, the entire transaction is buffered in
the ROB. After an invalidation to block B, the LQ and SQ are searched. The store st r2, B
had performed its exclusive prefetch, so it will need to retry and complete the prefetch again
before the transaction can commit (this does not require any squashes). The load ld B, r2
was also executed and is marked with a re-execution fault. When the re-execution fault is
detected in a transaction, all in-flight instructions (including those after the transaction) are
squashed. After this, fetching starts at the begin micro-op and the transaction is retried once
the squashed instructions are drained.

To prevent livelocks between conflicting transactions, we introduce a random exponential
backoff period between retries depending on the number of aborts. We also test a variant
where the backoff is increased when exclusive prefetches are retried.

4.6. LOCKING 25

Detected re-exec fault during transaction

begin

ROB head

(blocked until transaction commit)

Transaction

ld r2, B st r1, A

st r1, A

re-exec faultprefetch retry

re-exec faultprefetch retry

addi r2, 1st r2, Bendaddi r3, 1

addi r3, 1 begin

Squash!

B was invalidated

ld r2, Baddi r2, 1st r2, Bend

Figure 4.1: Example showing a transaction being squashed after receiving a conflicting invalidation.

4.6 Locking
To increase the chances that a processor will, at some point, have all the blocks it needs in L1,
we activate cache line locks that prevent invalidations and downgrades. In contrast to cache
line locking in CLEAR (subsection 2.3.4), instead of accessing the cache only after blocks
have been locked, we access memory freely and lock as many cache lines as possible once
blocks are brought to L1. On one hand, we avoid the bottleneck of having to wait for lock
acquisition before sending subsequent requests, and our procedure easily accommodates read
and write sets that vary between retries. On the other hand, this procedure is speculative and
vulnerable to invalidations (which cause aborts) at many points in time.

We keep track of the read and write set of the transaction (the number of transactional loads
and stores that access each cache block) to know which blocks should try to be locked. The
read and write set of the transaction can be derived from the target addresses of all executed
(and not squashed) transactional entries in the LQ and SQ.

In conventional processor designs, the L1 cache controller can be easily connected to the
LQ and SQ. In gem5, however, there is currently no direct way of generating communication
between them. We simulate a realistic interaction by sending instantaneous messages to the
cache controller whenever blocks are added or removed from the read or write sets, so the
cache controller can keep track of the blocks accessed during the transaction.

Locks can only be acquired for blocks in L1 that are in the state required for the transaction
(a state such that they are ready to be accessed in the transaction without sending or waiting
for additional coherence requests). A locked block delays any coherence requests that would
change its state to one that is not ready for the transaction. The delay lasts until the block is
unlocked.

The read and write set of a transaction changes as it executes. Thus, we are presented with
the challenge of acquiring locks in a deadlock-free manner for a changing set of addresses.
Our approach is to try and lock as many addresses as possible in a locking process that follows
the lex order explained in subsection 2.2.4. This means that a block that is ready can only be
locked if all previous blocks (according to the lex order) have been locked. When a new block
is added to the transaction, it can only be locked if the complete locking sequence follows lex

26 DESIGN AND IMPLEMENTATION

D

r

No

C

No

B

M

C

rwNeeds

Execute load D

Current state
Locked?

1

Yes Yes
M

C

rwNeeds
Current state

Locked? Yes
S

D

r

No
I

rwNeeds
Current state

Locked?
M
rw

No
S

D

r

S

Yes
E

A

rwNeeds
Current state

Locked? No
I

B

r

No
M

C

rw

Yes
S

D

r

Yes
E

A

rwNeeds
Current state

Locked? Yes
E

B

rw

Yes
M

C

rw

Execute store B2

Execute store A3 Receive data B4

Figure 4.2: Example showing locking in lex order as blocks are added to the read and write sets of a
transaction.

order. If it cannot be locked, some locks need to be released and reacquired in a different
order than they were originally locked in, taking into account the added step of locking the
new address.

Figure 4.2 shows an example for a transaction that is in the middle of executing. Block
addresses are represented with letters, and the lex order follows the lexicographical ordering
of the letters. At the initial time, the only block accessed is C, and C needs to be written. C
is present in M state, so any requests from other processors that attempt to read or write to C
can be delayed.

Next, in 1⃝ the transaction executes a load to D. The cache happens to already have read
access to D, and all previous blocks (C) are also in their required state, so any write request
from other processors to D can be delayed. External read requests to D are allowed because
they do not change the state of D. C can still be locked and delays read and write requests.
In 2⃝, the transaction executes a write to address B. The processor does not yet have access
to B, and requests it. While B is being fetched with write permissions, B cannot be locked
(because the block is not present). As a consequence, all following blocks in lex order (C and
D) cannot be locked. In 3⃝, the transaction executes a write to address A. Block A happens to
be available with write permissions, and can be locked. In 4⃝, block B is received with write
permissions, so all transaction blocks can be locked.

A consequence of this locking method is that once all transaction blocks are ready in L1,
they can all be locked, so the same locking mechanism is used to retain blocks through the
commit stage.

The locking in lex order that we have discussed so far avoids all possible deadlocks in
private structures. For shared structures (shared caches and sparse directories), it remains
to activate locks for entire sets when activating locks for blocks with the same lex order, as
indicated in subsection 2.2.4. The lex order conflict can appear when a new access is added to
the transaction, and a conflicting block might already be locked in the directory. In this case,
to avoid deadlock the individual lock has to be released before activating the special lock for

4.7. TRANSACTION COMMIT 27

all the ways in the directory. We do not implement this mechanism because the deadlock
scenario is highly unlikely.

4.7 Transaction commit
There are two conditions before transaction commit can start:

1. All micro-ops of the transaction must have executed and must be ready to commit. This
ensures that all memory accesses of the transaction have executed and all modifications
to register state are buffered in the ROB. This also allows checking that no exceptions
will be found in the process of committing the transaction.

2. All blocks accessed during the transaction must be present in L1 in a state that allows
them to be accessed without generating or waiting for additional coherence messages
(as described in section 4.4).

Both conditions will be met if all transactional loads and stores are executed (and not
squashed) and all the exclusive prefetches have completed, which is what our implementation
checks before starting transaction commit. Once the conditions are met, begin is allowed to
commit, and so are all instructions of the transaction until end. Stores, after committing, are
allowed to access memory. The locking mechanism explained in section 4.6 ensures that
transactional modifications to the cache are perceived as atomic by other processors. As a re-
sult, we unlock blocks once their last store completes (when stores complete and are removed
from the SB, they are also removed from the write set of the transaction).

Blocks that are only read need to be in L1 before the transaction commit stage starts, but
they do not need to remain locked through the commit stage, because all loads have already
executed and loaded values are stored in the ROB. Thus, we clear the transaction read set
on transaction commit stage start, so blocks that are only read are no longer candidates for
locking. We disable squashing due to invalidation notifications for transactional loads while
the transaction is in the process of committing.

When the end instruction reaches ROB head, as it behaves like a full memory barrier, it
can only commit once all transactional stores have completed and the SB is empty.

4.8 Exceptions and interrupts
We follow the naming convention that treats exceptions as internal events (e.g. divide-by-
zero error) and interrupts as external events (e.g. timer or I/O device). We need to discuss
interrupts and exceptions because a requisite for atomicity is that interrupts and exceptions
cannot be handled during transaction commit [35].

Once the CPU notices that an interrupt is pending, it stops fetching and waits until all in-
flight instructions have finished. This requirement implies that interrupt handling waits until

28 DESIGN AND IMPLEMENTATION

the ROB is empty, therefore we know that interrupts will be automatically delayed until the
current transaction ends. However, the CPU might stop fetching halfway through a transac-
tion. We detect these doomed transactions when fetch is stopped, begin is blocking the ROB
head and no end micro-ops are in-flight. We squash doomed transactions to drain the ROB,
and handle the interrupt before they are retried. In our benchmarks, interrupts are infrequent
and result in very few (if any) aborts.

Exceptions, on the other hand, cannot be delayed. Exceptions in gem5 are caused by
“faulty” instructions. Before each instruction is committed, the processor checks if it has
an associated fault. If a fault is found, the processor is forced to instantly squash all in-flight
instructions and handle the exception corresponding to the fault. To avoid doing this midway
through transaction commit, before starting transaction commit we first wait for all instruc-
tions to be completely executed, so they produce all the faults they can, and then we scan the
ROB to see if any transactional instruction is faulty. Some exceptions (such as the one men-
tioned in section 4.5) can be handled by just squashing the entire transaction and re-executing.
This is not the common case, and most faults will keep appearing after re-execution until the
handling routine is carried out. We have not yet developed a solution for the rest of exceptions
(although page faults can be mitigated by prefaulting the memory accessed by transactions).
Many HTMs systems handle exceptions by taking the fallback path.

4.9 Limitations
We now summarize the main limitations of our system:

• Interrupts and exceptions cannot be handled during transactions (this includes system
calls, which invoke exceptions).

• To make sure that all blocks accessed in the transaction fit into L1, the number of cache
lines cannot be greater than L1 associativity. In our simulated CPU, this means that
transactions can access a maximum of 8 different cache lines.

• Transactions have a capacity limit set by the size of the ROB, LQ, SQ and RAT. The
programmer is held responsible for creating simple enough transactions so that this
does not happen.

• Misprediction squashes count towards capacity limits in processors with lazy squash-
ing. It is recommended not to use complex control flow inside transactions, such as
difficult-to-predict conditionals inside loops.

• The system does not have a fallback path. Instead, we rely on the effectiveness of the
backoff mechanism.

We also highlight the overhead of executing transactions. This might be a performance
attribute, more than a limitation, but it could be improved and needs to be taken into account.

4.9. LIMITATIONS 29

The innate overhead of transactions (without taking conflicting transactions into account) is
due to (1) the fences at the start and end of transactions (which have been shown to harm
performance in atomic instructions [38]) and (2) temporarily refraining from committing in-
structions to buffer transactional state. Similarly to atomics, it is convenient for performance
to only execute transactions if necessary.

5 Evaluation
We simulate variants of our implementation in multiple benchmarks. A detailed description
of the benchmark workloads is included in the following sections, as well as a discussion of
the gathered results.

5.1 Data structure benchmarks
We do not use pinned threads in any of the tests, and instead thread placement is handled
by the OS, resulting in a more realistic benchmarking environment. In each benchmark, the
same total number of operations has to be performed regardless of the number of threads. We
try to choose a high enough number of operations for each benchmark so that the standard
deviation of the results between runs is low, but we still include error bars in the results.

For data structures that allow different operations, we try to generate a representative mix.
For the deque, queue and stack we generate 50% insertions and 50% deletions. For the sorted
list, hash map and binary search tree we generate a first stage only with lookups, a second
mixed stage (10% insertions, 10% deletions and 80% lookups) and a third stage of only up-
dates (50% insertions and 50% deletions).

We compare the execution time of coarse-grained locking (except for arrayswap, where
there is one lock per element of the array, and therefore uses fine-grained locking) against
two major HTM variants. The first variant consists of our in-core HTM, without lex order
locking, that performs conflict resolution like a conventional HTM with exponential backoff.
The second variant includes our lex order locking mechanism for reducing aborts. For both,
we include two sub-variants that increase the exponential backoff when an exclusive prefetch
has to be retried (i.e., in these sub-variants, both loads and store retries increase the counter
that determines the upper limit of the random backoff delay).

In Figure 5.1 we summarize the results of the benchmarks over all data structures. Specifi-
cally, Figure 5.1a plots the geometric mean of the normalized execution time. Time is normal-
ized over the execution time of the lock-based algorithm for 1 thread. We also plot the average
number of aborts (transactions that are completely squashed due to interrupts or invalidations
of loaded blocks) per commit in Figure 5.1b. It is difficult to generate accurate energy met-
rics from computer architecture simulations, but a reduction in the number of aborts can be a
good proxy that correlates with a decrease in energy consumption. Each abort avoided with
our locking method is achieved by delaying a requesting transaction instead of aborting and
re-executing the transaction that receives the request. Hence, by reducing aborts we prevent
discarding useful speculative state.

31

32 EVALUATION

HTM (backoff on load/prefetch retry)

Coarse-grained locking

HTM (backoff on load/prefetch retry) + lex order locking

HTM (backoff on load retry)

HTM (backoff on load retry) + lex order locking

1 2 4 8 16 32
Number of threads

0.5

1.0

1.5

2.0

No
rm

al
ize

d
tim

e

(a) Geometric mean of normalized exe-
cution times.

1 2 4 8 16 32
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ab
or

ts
 p

er
 c

om
m

it
(b) Average number of aborts per com-

mit.

Figure 5.1: Summary of results for data structure benchmarks.

In what follows, we explore the specific results for each of the data structures in more detail.
The results are grouped separately for execution time and number of aborts per commit in
Figure 5.2 and Figure 5.3, respectively.

5.1.1 Arrayswap
In arrayswap, all HTM versions outperform the locking alternative. The size of the array is
constant (16 cache lines, specifically) so, understandably, the speedup decreases when having
a higher number of cores. The alternative with lex order locking significantly reduces the
number of aborts and, for high core counts (and therefore high contention), it is slightly faster.

5.1.2 Binary search tree, sorted list and hash map
The HTM variants perform similarly due to the low number of aborts, but they all outperform
the locking alternative. The low ratio of aborts is due to using small MCAS transactions
in structures with many different possible conflict points, and due to taking many lookup
operations into account. Still, lex order locking manages to halve the number of aborts on
average.

5.1.3 Deque, queue and stack
These are the benchmarks where lex order locking is most beneficial for execution time. This
is due to the high contention (as we can see by the rate of aborts in Figure 5.3e, Figure 5.3f and

5.1. DATA STRUCTURE BENCHMARKS 33

HTM (backoff on load/prefetch retry)

Coarse-grained locking

HTM (backoff on load/prefetch retry) + lex order locking

HTM (backoff on load retry)

HTM (backoff on load retry) + lex order locking

1 2 4 8 16 32
Number of threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
tim

e

(a) Arrayswap

1 2 4 8 16 32
Number of threads

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
tim

e

(b) Binary search tree

1 2 4 8 16 32
Number of threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
tim

e

(c) Sorted list

1 2 4 8 16 32
Number of threads

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
tim

e

(d) Hash map

1 2 4 8 16 32
Number of threads

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
tim

e

(e) Deque

1 2 4 8 16 32
Number of threads

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
tim

e

(f) Queue

1 2 4 8 16 32
Number of threads

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
tim

e

(g) Stack

Figure 5.2: Normalized execution time in data structure benchmarks

34 EVALUATION

HTM (backoff on load/prefetch retry)

HTM (backoff on load/prefetch retry) + lex order locking

HTM (backoff on load retry)

HTM (backoff on load retry) + lex order locking

1 2 4 8 16 32
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ab
or

ts
 p

er
 c

om
m

it

(a) Arrayswap

1 2 4 8 16 32
Number of threads

0.000

0.002

0.004

0.006

0.008

Ab
or

ts
 p

er
 c

om
m

it

(b) Binary search tree

1 2 4 8 16 32
Number of threads

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ab
or

ts
 p

er
 c

om
m

it

(c) Sorted list

1 2 4 8 16 32
Number of threads

0.000

0.002

0.004

0.006

0.008

0.010
Ab

or
ts

 p
er

 c
om

m
it

(d) Hash map

1 2 4 8 16 32
Number of threads

0.0

0.5

1.0

1.5

2.0

Ab
or

ts
 p

er
 c

om
m

it

(e) Deque

1 2 4 8 16 32
Number of threads

0.0

0.5

1.0

1.5

2.0

Ab
or

ts
 p

er
 c

om
m

it

(f) Queue

1 2 4 8 16 32
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

Ab
or

ts
 p

er
 c

om
m

it

(g) Stack

Figure 5.3: Aborts per commit in data structure benchmarks

5.2. MICROBENCHMARKS 35

Figure 5.3g), as threads are performing constant updates in, at most, two different insertion
and deletion points. Once again, lex order locking significantly reduces the number of aborts.

5.2 Microbenchmarks
Figure 5.4 and Figure 5.5 plot the normalized execution time and number of aborts per commit
in the microbenchmarks, respectively.

HTM (backoff on load/prefetch retry)

CAS loop

HTM (backoff on load/prefetch retry) + lex order locking

HTM (backoff on load retry)

HTM (backoff on load retry) + lex order locking

1 2 4 8 16 32
Number of threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

No
rm

al
ize

d
tim

e

(a) Fetch-and-add double

1 2 4 8 16 32
Number of threads

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tim

e

(b) Atomic max

Figure 5.4: Normalized execution time in microbenchmarks

HTM (backoff on load/prefetch retry)

HTM (backoff on load/prefetch retry) + lex order locking

HTM (backoff on load retry)

HTM (backoff on load retry) + lex order locking

1 2 4 8 16 32
Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

Ab
or

ts
 p

er
 c

om
m

it

(a) Fetch-and-add double

1 2 4 8 16 32
Number of threads

0.0

0.1

0.2

0.3

0.4

0.5

Ab
or

ts
 p

er
 c

om
m

it

(b) Atomic max

Figure 5.5: Aborts per commit in microbenchmarks

The scalability of HTM outperforms the CAS loop in fetch-and-add. In this scenario, even
when a single cache line is being modified in each transaction, the variant with cache line lock-
ing reduces execution time and the number of aborts. The order in which locks are acquired

36 EVALUATION

is irrelevant in this case because there is a single cache line. What generates the reduction
in the number of aborts is being able to instantly lock the cache line when it is received with
write permissions, even before transaction commit starts. In the baseline, a transaction might
have all the required blocks in L1 but will have to wait in a vulnerable state for the core to
start transaction commit (the core needs to check that all instructions have executed and all
loads and exclusive prefetches have completed).

In atomic max, updates to the global maximum are still not too frequent (even after initial-
izing the arrays from a random function with an increasing upper bound), and execution time
becomes similar to the CAS loop version when the number of cores increases.

6 Conclusion and future work
In this work, we implemented an HTM that buffers speculative state in the ROB. The HTM
mechanism required minimal changes to existing hardware. In our benchmarks, it performs
better than coarse-grained locking and similarly or better than CAS loop constructs, which
highlights the low overhead of the implementation. Although HTMs that buffer transactions
in the ROB have not been thoroughly explored in the past, our results suggest that they are
viable for efficiently supporting small transactions.

We later incorporated locking of transactional blocks in a non-deadlocking lex order. We
measure an important reduction in the number of aborts (by 30% on average for 32 cores) that,
in addition to reducing execution time in contended scenarios, is likely to result in energy
savings. Variants of the HTM which increase backoff when exclusive prefetches are retried
were tested, but they did not provide any benefits when already using lex order locking.

The main pending work in our HTM is to tackle the limitations listed in section 4.9. For
instance, the limit of 8 cache lines can be prohibitive for some transactions. Other main limita-
tions include proper handling of exceptions and ensuring forward progress. Forward progress
can be guaranteed by software (by requiring a fallback path) or by hardware (through the con-
flict resolution mechanism [5, 22] or by stopping all conflicting processors [23]). Ensuring
forward progress without the need of a fallback path seems to be the most attractive option,
as this would finish establishing our HTM as a versatile replacement for many short atomic
operations.

37

Bibliography
[1] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of multi-

processor programming. Morgan Kaufmann Publishers (imprint of Elsevier), 2 edition,
2021.

[2] Dmitry Vyukov, Sanjay Ghemawat, Mike Burrows, Jeffrey Yasskin, Kostya Serebryany,
Hans Boehm, and Ashley Hedberg. The danger of atomic operations, Jun 2021. URL
https://abseil.io/docs/cpp/atomic_danger. Accessed: 2024-11-10.

[3] Herb Sutter. The trouble with locks. C/C++ Users Journal, 23(3), 2005.

[4] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Synthe-
sis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2010. ISBN
9781608452361.

[5] Mahita Nagabhiru and Gregory T Byrd. Achieving forward progress guarantee in small
hardware transactions. IEEE Computer Architecture Letters, 2024.

[6] James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts in pipelined
processors. IEEE Transactions on computers, 37(5):562–573, 1988.

[7] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory
consistency and cache coherence. Springer Nature, 2 edition, 2020.

[8] AMD64 Architecture Programmer’s Manual. Advanced Micro Devices,
2024. URL https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/programmer-references/24593.pdf. Accessed: 2025-
05-07.

[9] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes. Springer, 1992.

[10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O
Myreen. x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, 2010.

[11] Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. Two techniques to en-
hance the performance of memory consistency models. Computer Systems Laboratory,
Stanford University, 1991.

39

https://abseil.io/docs/cpp/atomic_danger
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf

40 BIBLIOGRAPHY

[12] Naama Ben-David, Guy E Blelloch, and Yuanhao Wei. Lock-free locks revisited. In Pro-
ceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 278–293, 2022.

[13] Maurice Herlihy. A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 15(5):745–770,
1993.

[14] Eduardo José Gómez-Hernández, Juan M Cebrian, Rubén Titos-Gil, Stefanos Kaxiras,
and Alberto Ros. Efficient, distributed, and non-speculative multi-address atomic oper-
ations. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 337–349, 2021.

[15] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual. Intel Corporation, 2024. URL https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-sdm.html.

[16] Alberto Ros and Stefanos Kaxiras. Non-speculative store coalescing in total store order.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 221–234. IEEE, 2018.

[17] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th annual international symposium
on Computer architecture, pages 289–300, 1993.

[18] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng Wu, Stefanie
Chiras, and Siddhartha Chatterjee. Software transactional memory: Why is it only a
research toy? Communications of the ACM, 51(11):40–46, 2008.

[19] Colin Blundell, E Christopher Lewis, and Milo MK Martin. Subtleties of transactional
memory atomicity semantics. IEEE Computer Architecture Letters, 5(2):17–17, 2006.

[20] Rubén Titos-Gil. Sistemas de memoria transaccional hardware: Políticas, conflictos y
su influencia en el rendimiento. Master’s thesis, Universidad de Murcia, 2007.

[21] Ravi Rajwar and James R Goodman. Speculative lock elision: Enabling highly concur-
rent multithreaded execution. In Proceedings. 34th ACM/IEEE International Sympo-
sium on Microarchitecture. MICRO-34, pages 294–305. IEEE, 2001.

[22] Ravi Rajwar and James R Goodman. Transactional lock-free execution of lock-based
programs. ACM SIGOPS Operating Systems Review, 36(5):5–17, 2002.

[23] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory architecture
and implementation for IBM system z. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 25–36. IEEE, 2012.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

BIBLIOGRAPHY 41

[24] Eduardo José Gómez-Hernández, Juan M Cebrian, Stefanos Kaxiras, and Alberto Ros.
Bounding speculative execution of atomic regions to a single retry. In Proceedings
of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4, pages 17–30, 2024.

[25] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH computer architecture news, 39(2):1–7,
2011.

[26] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Am-
slinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann, Srikant
Bharadwaj, et al. The gem5 simulator: Version 20.0+. arXiv preprint arXiv:2007.03152,
2020.

[27] Agner Fog. The microarchitecture of Intel, AMD and VIA cpus: An optimization guide
for assembly programmers and compiler makers, 2024. URL https://www.agner.
org/optimize/microarchitecture.pdf. Accessed: 2025-05-07.

[28] Agner Fog. Instruction tables: Instruction latencies, throughputs and micro-operation
breakdowns. http://www.agner.org/optimize/instruction_tables.pdf, 2023.
Accessed: 2025-05-07.

[29] Joaquín Ferrer, Juan M Cebrian, Ricardo Fernández-Pascual, and Manuel E Acacio.
Precise characterization of coherence activity in multicores using gem5. The Journal
of Supercomputing, 81(8):1–30, 2025.

[30] André Seznec. TAGE-SC-L branch predictors again. In 5th JILP Workshop on Com-
puter Architecture Competitions (JWAC-5): Championship Branch Prediction (CBP-5),
2016.

[31] George Z Chrysos and Joel S Emer. Memory dependence prediction using store sets.
ACM SIGARCH Computer Architecture News, 26(3):142–153, 1998.

[32] Nodari Kankava. Exploring the efficiency of multi-word compare-and-swap. Master’s
thesis, Uppsala University, 2020.

[33] Álvaro Rubira García. Análisis de técnicas de sincronización en estructuras de datos
concurrentes. Bachelor’s thesis, Universidad de Murcia, 2024.

[34] Eduardo José Gómez-Hernández, Juan M Cebrian, Stefanos Kaxiras, and Alberto Ros.
Splash-4: A modern benchmark suite with lock-free constructs. In 2022 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 51–64. IEEE, 2022.

[35] Ravi Rajwar. Speculation-based techniques for transactional lock-free execution of lock-
based programs. The University of Wisconsin-Madison, 2002.

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/instruction_tables.pdf

42 BIBLIOGRAPHY

[36] Intel. Intel® Xeon ® E3-1200 v3 Processor Product Family 61 Specification Update Au-
gust 2020, 2020. URL https://www.intel.com/content/dam/www/public/us/
en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf.
page 61. Accessed: 2025-06-17.

[37] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. Rage against the
machine clear: A systematic analysis of machine clears and their implications for tran-
sient execution attacks. In 30th USENIX Security Symposium (USENIX Security 21),
pages 1451–1468, 2021.

[38] Ashkan Asgharzadeh, Juan M Cebrian, Arthur Perais, Stefanos Kaxiras, and Alberto
Ros. Free atomics: hardware atomic operations without fences. In Proceedings of the
49th Annual International Symposium on Computer Architecture, pages 14–26, 2022.

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf

Acronyms and abbreviations
CAS Compare-and-swap.
HTM Hardware transactional memory.
ISA Instruction set architecture.
LL/SC Load linked/store conditional.
LQ Load queue.
MAD atomics Multi-address atomic operations.
MCAS Multi-address compare-and-swap.
RAT Register allocation table.
ROB Reorder buffer.
SB Store buffer.
SLE Speculative lock elision.
SQ Store queue.
TM Transactional memory.

43

	Introduction and motivation
	Background and related work
	Out-of-order CPUs
	Reorder Buffer
	Load queue and store queue
	Cache coherence
	Speculative load execution

	Synchronization in shared memory
	Atomic operations
	Locks
	Lock-free algorithms
	MAD atomics and lex order

	Transactional memory
	Characterization of HTM implementations
	Speculative Lock Elision
	Transactional-Execution Facility in the z/Architecture
	cleAR
	Constrained HTM with NACKs for forward progress

	Objectives and methodology
	Simulated system
	Benchmarks
	Data structures
	Microbenchmarks

	Design and implementation
	begin and end instructions
	Buffering speculative state
	Misspeculation and squashes
	Loading required blocks into L1
	Conflict detection and resolution
	Locking
	Transaction commit
	Exceptions and interrupts
	Limitations

	Evaluation
	Data structure benchmarks
	Arrayswap
	Binary search tree, sorted list and hash map
	Deque, queue and stack

	Microbenchmarks

	Conclusion and future work
	Bibliography
	Acronyms and abbreviations

