
Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Advancements Towards
non-Speculative Concurrent

Execution of Critical Sections

Eduardo José Gómez Hernández

Advisors:
Alberto Ros Bardisa

Stefanos Kaxiras

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Outline

1. Introduction

2. Objectives

3. Background

4. Methodology

5. Contribution 1: 1-Address Critical Sections (Splash-4)

6. Contribution 2: 4-Address Critical Sections (Hardware Multi-Address Atomics)

7. Contribution 3: n-Address Critical Sections (CLEAR Bounding TM to a single retry)

8. Conclusion a Future Lines
2

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

• The increase of single core performance is no longer an easy task

• This is an issue to continue showing attractive improvements on each generation

• Chip Multi Processor (CMPs) is the paradigm switch that is currently being used

• Now each generation of chips includes more and more cores inside the same package

• These cores are identical, or at least very similar, stablishing the Symmetic Multi-Processing

(SMP) as the today’s standard of high-performance computing

3

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

Antoher problem appear in the raise of CMPs and SMP, data coherence

• Chips already moved away from direct memory access as its speed was not able to catch up

with the speed of the computing core

• Cores access a much faster but slower in chip memory called cache

• Each core has its own private cache, introducing the problem of the data coherency

4

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

• Ideally, software should be able to use all the available cores and increase the performance in the

same proportion.

• However, the real scenario is totally different

• Applications require synchronization between different cores (either data or computing)

5

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

x = 512

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

read x 512 read x 512

x = 512

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

read x 512

l = x + 1 513 = 512 + 1

read x 512

l = x + 1 513 = 512 + 1

x = 512

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

read x 512

l = x + 1 513 = 512 + 1

write l 513

read x 512

l = x + 1 513 = 512 + 1

write l 513

x = 512

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Introduction

But when working with multiple

threads in the SMP model, with a

Shared Memory Model, coherence

is not enough.

read x 512

l = x + 1 513 = 512 + 1

write l 513

read x 512

l = x + 1 513 = 512 + 1

write l 513

x = 512

x = 513

6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the

high-performance concurrent execution of critical sections

7

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the

high-performance concurrent execution of critical sections

1. What is the current state to evaluate the performance of critical sections?

7

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the

high-performance concurrent execution of critical sections

1. What is the current state to evaluate the performance of critical sections?

2. Can we extend the best current solution to solve the issue?

7

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the

high-performance concurrent execution of critical sections

1. What is the current state to evaluate the performance of critical sections?

2. Can we extend the best current solution to solve the issue?

3. Can we integrate the best solution techniques into a more generic approach?

7

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Background

To prevent this from happening, we have two main approaches

8

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Background

To prevent this from happening, we have two main approaches

1. Protect the code region against concurrent execution

8

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Background

To prevent this from happening, we have two main approaches

1. Protect the code region against concurrent execution

2. Protect the data against concurrent accesses/modifications

8

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Background

To prevent this from happening, we have two main approaches

1. Protect the code region against concurrent execution

2. Protect the data against concurrent accesses/modifications

8

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Previous approaches

Atomic
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

9

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Previous approaches

Atomic
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

• Widely supported by modern languages and architectures

• The most efficient way of performing an operation atomically
but limited to a single memory location

• Commonly implemented in hardware: cache locking

9

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Previous approaches

• Based on constructs developed over atomic instructions

• Challenging and error prone

9

Atomic
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Previous approaches

• Protect critical sections using locks (or mutexes)

• Simple and easy to implement, but at the cost of concurrency

9

Atomic
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Previous approaches

• Speculative Lock Elision (SLE), Hardware Transactional Memory (HTM)

• Extract parallelism when the ARs* are not conflicting

• Retry if conflicts: Limit number of retries + alternative not-concurrent path

9

Atomic
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

* ARs (or Atomic Regions) a unified view of Critical Section and Transactions

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Methodology

Two environments have been used in this
thesis:

• Gem5 Simulator
• Real Machine

- AMD EPYC 7702P (64 cores @ 2GHz)
- 32KiB L1 D and I caches
- 512KiB L2
- 16MB L3

All applications have been run multiple
times measuring the Region of Interest

10

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Summary

11

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4

Let’s start with single-address atomics!

Published at:
- ISPASS 2021
- IISWC 2022

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash History

1995 2007 2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

13

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash History

1. Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

The first major
parallel benchmark
suite. Still in use
(+5k cites)

1995 2007 2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

13

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash History

1. Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995
2. Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007

The first major
parallel benchmark
suite. Still in use
(+5k cites)

A small update that
fixes bugs and
updates the
programming style

1995 2007 2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

13

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash History

1. Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995
2. Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3. Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary Research", ISPASS 2016

The first major
parallel benchmark
suite. Still in use
(+5k cites)

A small update that
fixes bugs and
updates the
programming style

First major update
that fixes data races
and performance
bugs

1995 2007 2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

13

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash History

1. Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995
2. Venetis, Ioannis E., et al, "The Modified SPLASH-2", https://www.capsl.udel.edu//splash/ 2007
3. Sakalis, Christos, et al, "Splash-3: A Properly Synchronized Benchmark Suite for Contemporary Research", ISPASS 2016
4. Gómez-Hernández, Eduardo José et al, "Splash-4: Improving Scalability with Lock-Free Constructs", ISPASS 2021

The first major
parallel benchmark
suite. Still in use
(+5k cites)

A small update that
fixes bugs and
updates the
programming style

First major update
that fixes data races
and performance
bugs

Current update,
exploiting lockfree
and atomic
operations

1995 2007 2016 2021

Splash-2 Minor
Update Splash-3 Splash-4

21 years
Computation
has changed

13

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Sync Overhead

• Splash-2 and Splash-3 are crafted using outdated
programming techniques

• Previous works noticed that the default input
sizes limit the scalability of some applications.

• The computation between synchronization
points is not substantially longer than the
synchronization

• Using larger datasets increases the execution
time, and that is a problem when using
simulation infrastructures

1 2 4 8 16 32 64

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

No
rm

.E
xe
cu
tio
n
Ti
m
e

14

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Splash-3 critical section status
• Modern ISAs typically provide a basic set of atomic operations that offer both atomicity and synchronization

• This basic set consists of atomic loads and stores, atomic read-modify-write (RMW) operations, and some
atomic comparisons and exchange operations

• Typical hardware RMW atomics are only available for integer types

15

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Replacing critical sections

16

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Replacing critical sections

16

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Replacing critical sections

16

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Replacing critical sections

16

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Atomic Barrier

Sense-Reversing Centralized Barrier

• Optimized for short waits

• Spinloops on a variable (only reading)

• A write will trigger all threads to exit the spinloop

17

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4 - Critical section status

Splash-4 reimplemented a significant portion of critical sections from Mutex into C11 atomics and
Atomic Constructs (CAExch)

18

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4

Barne s Cholesky FFT FMM LU-Cont LU-Non Ocea n-Cont Ocea n-Non Radiosi ty Radix Raytrace Volrend Wate r-NS Wate r-SP Ge omea n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

No
rm

.E
xe
cu
tio
n
Ti
m
e

Splash-3 Atomics Barrier Splash-4

Splash-4 reduces 50% the average execution time on a real modern 64-core system

19

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4

Splash-4 boosts the scalability of most applications in the Splash benchmark suite up to 32 cores

20

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics
If 1 was not enough, let’s go with 4!

4-Address Atomics (MADs)

Published at:
- MICRO 2020

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Introduction

• Programmers have always request the support of read-modify-write atomics of several address

22

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Introduction

• Programmers have always request the support of read-modify-write atomics of several address

• Ideally multi-address atomics should be:
1.Fine-grained locking to enable concurrency
2.non-speculative to prevent retries (re-executions/aborts)

22

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Background

A hardware implementation of the
MCAS synchronization primitive¹

● A set of table instructions to setup fill the the
locks structure, and later another one start
locking the stored addresses

● Deadlocks limitations or due lack to of
resource non-speculative solution.

 Non-Speculative Store Coalescing in
Total Store Order²

• Limited account resources are taken into

• Atomic arbitrarily, groups on conflict
stablished atomic groups are split

• Atomic operations groups are for established
atomic by the programmer and cannot be split

1 Patel et al, DATE 2017
2 Ros and Kaxiras, ISCA 2018

23

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Usage

24

• What if these three variables are no
independent?

• Can we design a non-speculative
solution that is able to solve the
problem?

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Usage

24

• What if these three variables are no
independent?

• Can we design a non-speculative
solution that is able to solve the
problem?

• YES!

• How?:
• Locking the three addresses
• Without deadlocks

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Usage

24

• What if these three variables are no
independent?

•
• Can we design a non-speculative

solution that is able to solve the
problem?

• YES!

• How?:
• Locking the three addresses
• Without deadlocks

/* Custom Atomic */
TFETCH_AND_ADD_DOUBLE(POTA, LPOTA, POTR, LPOTR, PTRF, LPTRF);

/* MCAS */
do {
 pPOTA = LOAD(POTA);
 pPOTR = LOAD(POTR);
 pPTRF = LOAD(PTRF);
 nPOTA = pPOTA + LPOTA;
 nPOTR = pPOTR + LPOTR;
 nPTRF = pPTRF + LPTRF;
} while(!TCAS(POTA, pPOTA, nPOTA, POTR, pPOTR, LPOTR, PTRF, pPTRF, nPTRF));

1
2

1
2
3
4
5
6
7
8
9

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

A
B
C
D
E
F
G

Address Order

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

A
B
C
D
E
F
G

Address Order

 B

 A

 D

 C

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

A
B
C
D
E
F
G

Address Order

 B E

 A F

 D

 C G

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

A
B
C
D
E
F
G

Address Order

E B
A F
D
G C

LexOrder

LexOrder = CacheLine Address % Cache Sets

 B E

 A F

 D

 C G

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder)
takes into account the limited
resources.

• This new order was tailored to only
take into account the cache sets.

• In this specific way, cache is forced to
be filled from set 0 to set n.

25

A 0x0040 E 0x4100
B 0x0100 F 0xC040
C 0x01C0 G 0xC0C0
D 0x0280

A
B
C
D
E
F
G

Address Order

E B
A F
D
G C

LexOrder

LexConflicts

LexOrder = CacheLine Address % Cache Sets

 B E

 A F

 D

 C G

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c
c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Example

26

Core

0

Private Cache

Directory
a
b

b b'

b'
c

b b'
a

a

c
c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics

• Minor modifications to:
• Directory
• L1 Dcache
• Decode (to support the new instructions)

• Added an extra unit attached to the LSU
• Provides all the logic required for:

• Tracking
• Ordering
• Locking
• Unlocking

Directory

LLC

Fetch
Decode

Rename

R
O

B

In
st

.
Q

u
e

ue

FU
UnitsLSU

LexOURegister
File

Writeback

Commit

L1I
Cache

L2
Cache

L1D
Cache

LexOU
Logic

Lock Queue

Addr
Cou

nte
r

Lo
ck

Hit Con
flict

27

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Private

28

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Private

28

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Private

28

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Private

28

Core

0

Private Cache

Lock Queue

a
a'
a''

a

Private Cache

Lock Queue

Core

0
a
a'

a'

a''

a

Private Cache

Lock Queue

✘

Core

0
a
a'

a'

a''

a

The number of addresses has to be at most the associality of the smallest cache

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Shared

29

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Shared

29

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Shared

29

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - Shared

29

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b' b
a

a

c

b'

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0
0.2
0.4
0.6
0.8
1.0
1.2

BSTree Deque HashMap MWObject Queue Stack

15
.6

5

12
.6

7

22
.1

8

12
.0

9

5.
34

1.
82

5.
3

4.
9

5.
96

6.
95

8.
29

6.
47

4.
32

1.
4

N
or

m
.E

xe
cu

ti
on

Ti
m

e

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bitcoin Water-NS Water-SP Intruder Geomean

2.
03

2.
64

1.
5

1.
23

1.
42

3.
19

1.
6

1.
22

1.
31

1.
4

N
or

m
.E

xe
cu

ti
on

Ti
m

e

Lock-Free TSX MAD Atomics

Multi-Address Atomics reduces up to almost 80% the execution time when compared against the basic
implementation done with mutex locks (normalized)

31

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR Bounding TM to a single retry

I got it, 4 is not enough, and it is hard to write...
How about n-Addresses but with 1 retry?

Published at:
- ASPLOS 2024

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Objective

• GOAL: Enable concurrent and non-speculative execution of ARs, without modifying the software/ISA

33

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Objective

• GOAL: Enable concurrent and non-speculative execution of ARs, without modifying the software/ISA

• KEY QUESTION: Can the hardware learn the memory footprint of ARs at runtime?

33

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Objective

• GOAL: Enable concurrent and non-speculative execution of ARs, without modifying the software/ISA

• KEY QUESTION: Can the hardware learn the memory footprint of ARs at runtime?

• If so, if a retry is needed,
• cachelines can be locked following a non-deadlocking global order,
• and the AR can be executed non-speculatively (no more retries needed)

33

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Memory

34

• To execute an Atomic Region non-
speculatively is to know the memory
footprint on advance before executing

• Can the hardware learn the memory
footprint?

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Memory

• To execute an Atomic Region non-
speculatively is to know the memory
footprint on advance before executing

• Can the hardware learn the memory
footprint?

• Most ARs do not change their memory
footprint on retries

34

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Usage

35

/* Lock */
LOCK(gl->PotengSumLock);
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
UNLOCK(gl->PotengSumLock);

1
2
3
4
5
6• What about the previous critical section

we have been discussing?

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Usage

35

/* Lock */
LOCK(gl->PotengSumLock);
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
UNLOCK(gl->PotengSumLock);

1
2
3
4
5
6• What about the previous critical section

we have been discussing?

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Usage

35

/* Lock */
LOCK(gl->PotengSumLock);
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
UNLOCK(gl->PotengSumLock);

1
2
3
4
5
6• What about the previous critical section

we have been discussing?

• In the case of a config, the hardware has
to take into account 3 addresses for read-
write (also depending on the compiler
another 3 for read-only)

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Write Read Local

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry – Types of ARs

36

Immutable

Memory footprint does never
change between retries.

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry – Types of ARs

36

Memory footprint does never
change between retries.

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Mutable

Because of the indirection,

/* CLEAR? */
SECTION_BEGIN;
data = *ptr;
data->POTA = data->POTA + LPOTA;
data->POTR = data->POTR + LPOTR;
data->PTRF = data->PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6
7

Because of the branch
(depending on a memory
location),

/* CLEAR? */
SECTION_BEGIN;
if (*wannabe > 5) {
 *POTA = *POTA + LPOTA;
 *POTR = *POTR + LPOTR;
 *PTRF = *PTRF + LPTRF;
}
SECTION_END;

1
2
3
4
5
6
7
8

memory footprint may change between retries

Immutable

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry – How?

• CLEAR executes the AR in two different, but collaborative steps:

37

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry – How?

• CLEAR executes the AR in two different, but collaborative steps:

1. Discovery
● An speculative attempt to execute the AR
● During the attempt, the processors learns the structure of the AR
● If the execution is successful (no conflicts), practically no overhead over baseline

37

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry – How?

• CLEAR executes the AR in two different, but collaborative steps:

1. Discovery
● An speculative attempt to execute the AR
● During the attempt, the processors learns the structure of the AR
● If the execution is successful (no conflicts), practically no overhead over baseline

2. Re-Execution
● Only executed if a confict was found during discovery
● If possible, the execution can be made non-speculatively

37

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Discovery

• Aborts are delayed until the end of the AR
• Because we want to processor to learn the

full AR

• Learns the memory accesses and the
immutability of the AR

• This is done by tracking branches and
indirections propagated by registers

• When reaching the end of the AR:
• If no pending abort -> complete!
• If an abort is pending -> decide!

38

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - non-speculative

• Execution without any speculation support (no more retries are guaranteed)

• Addresses are locked in cache, following a non-deadlocking manner

• When the execution finished, all the locked addresses are unlocked

39

Lock memory
addresses

Execute the
Atomic Region

Unlock memory
addresses

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - speculative

• Execution with speculation support
• to recover in case of a new conflict

• Written (and conflicting) addresses are locked in cache
• to prevent conflicts

• When the execution finishes (either successfully or not),
all the locked addresses are unlocked

• As the section is mutable, it is marked to prevent future
discovery attempts

40

Lock memory
addresses

Speculatively
Execute

Atomic Region

Unlock memory
addresses

Did
the execution get

aborted?

No

Disable Discovery

Yes

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Implementation

41

FetchDecodeRename

Dispatch

Issue

 LSU

Commit

ROB

SQ Cache Controller

L1D
L2

Directory

LLC

FU
Units

Register
File

Addresses to Lock Table (ALT)

Valid

1 bit

Address Needs Locking

1 bit58 bits

Locked

1 bit

Hit

1 bit

Conflict

1 bit

Conflicting Reads Table (CRT)

Valid

1 bit

Address

58 bits

LRU

3 bits

Explored Region Table (ERT)

Valid

1 bit

Program Counter

64 bits

Is Convertible

1 bit

Is Immutable

1 bit

SQ-Full Counter

2 bits

LRU

4 bits

Transactional
Controller

L1I

1

2

3

LQ

4

Indirection

...

1 bit

...

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry

CLEAR shows over a 22% improvement over the baseline Requester Wins

42

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry

CLEAR reduces the amount of aborts per commit from 8 to 2

43

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry

CLEAR when implemented atop Power-TM offers 23% improvement over Power-TM

44

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Conclusion

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Conclusion

• Non-speculative and concurrent execution of critical sections is a problem far from being solved

46

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Conclusion

• Non-speculative and concurrent execution of critical sections is a problem far from being solved

• Splash-4 try to show why this issue matters and why the community needs to continue updating
benchmarks

46

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Conclusion

• Non-speculative and concurrent execution of critical sections is a problem far from being solved

• Splash-4 try to show why this issue matters and why the community needs to continue updating
benchmarks

• Developed a methodology that allows non-speculative, efficient, and deadlock-free, to lock multiple
cachelines at the same time to perform a multiple address atomic operation

46

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Conclusion

• Non-speculative and concurrent execution of critical sections is a problem far from being solved

• Splash-4 try to show why this issue matters and why the community needs to continue updating
benchmarks

• Developed a methodology that allows non-speculative, efficient, and deadlock-free, to lock multiple
cachelines at the same time to perform a multiple address atomic operation

• Introduced a new method that can determine the data used by the section and perform a
non-speculative re-execution of the section to guarantee its success in just one retry

46

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations.

47

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations.

● One lex order may not be enough, this happens with two or more shared structures that have enough
capacity but with different indexing policies

47

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations.

● One lex order may not be enough, this happens with two or more shared structures that have enough
capacity but with different indexing policies

● Explore is the combination of locking and SIMD instructions

47

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations.

● One lex order may not be enough, this happens with two or more shared structures that have enough
capacity but with different indexing policies

● Explore is the combination of locking and SIMD instructions

● The Splash benchmark suite still has some issues

47

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations.

● One lex order may not be enough, this happens with two or more shared structures that have enough
capacity but with different indexing policies

● Explore is the combination of locking and SIMD instructions

● The Splash benchmark suite still has some issues

● We wanted to explore how the compiler could help with the conversion of critical sections and
transactions

47

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Thank you!

Questions?

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Splash-4

Splash-4 when executed in the gem5 simulator shows significant scalability improvements

113

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR

114

Atomic Execution
Mode

Is any
of the locks

taken?

Acquire locks in
read mode

Release the locks

Yes

Lock memory
addresses

No

Execute Critical
Section

Unlock memory
addresses

Release read
mode locks

Fallback Execution
Mode

Is any
of the locks

taken?

Acquire the locks

No

Execute Critical
Section

Release the locks

Yes

Atomic Execution
Mode

Is any
of the locks

taken?

Acquire locks in
read mode

Release the locks

Yes

Lock memory
addresses

No

Execute Critical
Section

Unlock memory
addresses

Release read
mode locks

Did
the execution get

interrupt?

No

Yes

Disable Discovery

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - MSHRs

115

Private Cache

Lock Queue

Private Cache

Lock Queue

Directory

Private Cache

Lock Queue

Core

0
Core

1
a a'
b

a

a
A
B
C
D

Core

2b'

a'

a'

a'' a'''

a'' a'''

b''

b''

b'''

b''' ✘
✘

1 1

2
2

3 Eviction
Buffers

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Deadlocks - MSHRs

116

Private Cache

Lock Queue

Private Cache

Lock Queue

Directory

Private Cache

Lock Queue

Core

0
Core

1
a a'
b

a

a
A
B
C
D

Core

2b'

a'

a'

a'' a'''

a'' a'''

b''

b''

b'''

b''' ✘
✘

1 1

2
2

3 Eviction
Buffers

Replacements when the eviction buffers are occupied must be taken in the cache itself (in-situ)

Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics

1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264 1 2 4 8 163264
0.0
0.2
0.4
0.6
0.8
1.0
1.2

BSTree Deque HashMap MWObject Queue Stack

28
.5

5

26
.6

2

13
.3

6

6.
73

1.
69

9.
03

8.
31

7.
21

6.
61

2.
55

1.
27

N
or

m
.C

om
m

it
te

d
In

st
s.

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Bitcoin Water-NS Water-SP Intruder Geomean

1.
72

3.
1

2.
12

1.
29

N
or

m
.C

om
m

it
te

d
In

st
s.

Lock-Free TSX MAD Atomics

Multi-Address Atomics reduces the amount of instructions commited even further than the lock-free
approaches.

117

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

