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Introduction

• The increase of single core performance is no longer an easy task

• This is an issue to continue showing attractive improvements on each generation

• Chip Multi Processor (CMPs)  is the paradigm switch that is currently being used

• Now each generation of chips includes more and more cores inside the same package

• These cores are identical, or at least very similar, stablishing the Symmetic Multi-Processing 

(SMP) as the today’s standard of high-performance computing
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Introduction

Antoher problem appear in the raise of CMPs and SMP, data coherence

• Chips already moved away from direct memory access as its speed was not able to catch up 

with the speed of the computing core

• Cores access a much faster but slower in chip memory called cache

• Each core has its own private cache, introducing the problem of the data coherency
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Introduction

• Ideally, software should be able to use all the available cores and increase the performance in the 

same proportion.

• However, the real scenario is totally different

• Applications require synchronization between different cores (either data or computing)
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Introduction

But when working with multiple 

threads in the SMP model, with a 

Shared Memory Model, coherence 

is not enough.
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Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the 

high-performance concurrent execution of critical sections
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Objective (Problem Statement)

The final objective of this thesis is to develop a non-speculative execution method that allows the 

high-performance concurrent execution of critical sections

1. What is the current state to evaluate the performance of critical sections?

2. Can we extend the best current solution to solve the issue?

3. Can we integrate the best solution techniques into a more generic approach?
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Background

To prevent this from happening, we have two main approaches
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Previous approaches

Atomic 
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches
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Previous approaches

Atomic 
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

• Widely supported by modern languages and architectures

• The most efficient way of performing an operation atomically
but limited to a single memory location

• Commonly implemented in hardware: cache locking
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Previous approaches

• Based on constructs developed over atomic instructions

• Challenging and error prone

9

Atomic 
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Lock Free Mutual
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Previous approaches

• Protect critical sections using locks (or mutexes)

• Simple and easy to implement, but at the cost of concurrency

9
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Previous approaches

• Speculative Lock Elision (SLE), Hardware Transactional Memory (HTM)

• Extract parallelism when the ARs* are not conflicting

• Retry if conflicts: Limit number of retries + alternative not-concurrent path

9

Atomic 
Instructions

Lock Free Mutual
Exclusion

Speculative
Approaches

* ARs (or Atomic Regions) a unified view of Critical Section and Transactions
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Methodology

Two environments have been used in this 
thesis:

• Gem5 Simulator
• Real Machine

- AMD EPYC 7702P (64 cores @ 2GHz)
- 32KiB L1 D and I caches
- 512KiB L2
- 16MB L3

All applications have been run multiple 
times measuring the Region of Interest
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Summary
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Splash-4

Let’s start with single-address atomics!

Published at:
- ISPASS 2021
- IISWC 2022
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Splash-4 - Splash History

1995 2007 2016 2021

Splash-2 Minor 
Update Splash-3 Splash-4

21 years
Computation
has changed
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Splash-4 - Splash History

1. Woo, Steven Cameron, et al, "The SPLASH-2 programs: Characterization and methodological
considerations." ACM SIGARCH computer architecture news 23, 1995

The first major 
parallel benchmark 
suite. Still in use 
(+5k cites)
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The first major 
parallel benchmark 
suite. Still in use 
(+5k cites)

A small update that
fixes bugs and 
updates the 
programming style

First major update 
that fixes data races 
and performance 
bugs
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Splash-4 - Sync Overhead

• Splash-2 and Splash-3 are crafted using outdated 
programming techniques

• Previous works noticed that the default input 
sizes limit the scalability of some applications.

• The computation between synchronization 
points is not substantially longer than the
synchronization

• Using larger datasets increases the execution 
time, and that is a problem when using 
simulation infrastructures
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Splash-4 - Splash-3 critical section status
• Modern ISAs typically provide a basic set of atomic operations that offer both atomicity and synchronization

• This basic set consists of atomic loads and stores, atomic read-modify-write (RMW) operations, and some 
atomic comparisons and exchange operations

• Typical hardware RMW atomics are only available for integer types
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Splash-4 - Replacing critical sections
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Splash-4 - Atomic Barrier

Sense-Reversing Centralized Barrier

• Optimized for short waits

• Spinloops on a variable (only reading)

• A write will trigger all threads to exit the spinloop
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Splash-4 - Critical section status

Splash-4 reimplemented a significant portion of critical sections from Mutex into C11 atomics and 
Atomic Constructs (CAExch)
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Splash-4
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Splash-3 Atomics Barrier Splash-4

Splash-4 reduces 50% the average execution time on a real modern 64-core system
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Splash-4

Splash-4 boosts the scalability of most applications in the Splash benchmark suite up to 32 cores
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Hardware Multi-Address Atomics
If 1 was not enough, let’s go with 4!

4-Address Atomics (MADs)

Published at:
- MICRO 2020
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Hardware Multi-Address Atomics - Introduction

• Programmers have always request the support of read-modify-write atomics of several address
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Hardware Multi-Address Atomics - Introduction

• Programmers have always request the support of read-modify-write atomics of several address

• Ideally multi-address atomics should be:
1.Fine-grained locking to enable concurrency
2.non-speculative to prevent retries (re-executions/aborts)
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Hardware Multi-Address Atomics - Background

A hardware implementation of the
MCAS synchronization primitive¹

● A set of table instructions to setup fill the the 
locks structure, and later another one start 
locking the stored addresses

● Deadlocks limitations or due lack to of  
resource non-speculative solution.

    Non-Speculative Store Coalescing in 
Total Store Order²

• Limited account resources are taken into

• Atomic arbitrarily, groups on conflict 
stablished  atomic groups are split

• Atomic operations groups are for established 
atomic by the programmer and cannot be split

1 Patel et al, DATE 2017
2 Ros and Kaxiras, ISCA 2018
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Hardware Multi-Address Atomics - Usage

24

• What if these three variables are no 
independent?

• Can we design a non-speculative 
solution that is able to solve the 
problem?



Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics - Usage
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• What if these three variables are no 
independent?

• Can we design a non-speculative 
solution that is able to solve the 
problem?

• YES!

• How?:
• Locking the three addresses
• Without deadlocks
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Hardware Multi-Address Atomics - Usage

24

• What if these three variables are no 
independent?

•
• Can we design a non-speculative 

solution that is able to solve the 
problem?

• YES!

• How?:
• Locking the three addresses
• Without deadlocks

/* Custom Atomic */
TFETCH_AND_ADD_DOUBLE(POTA, LPOTA, POTR, LPOTR, PTRF, LPTRF);

/* MCAS */
do {
  pPOTA = LOAD(POTA);
  pPOTR = LOAD(POTR);
  pPTRF = LOAD(PTRF);
  nPOTA = pPOTA + LPOTA;
  nPOTR = pPOTR + LPOTR;
  nPTRF = pPTRF + LPTRF;
} while(!TCAS(POTA, pPOTA, nPOTA, POTR, pPOTR, LPOTR, PTRF, pPTRF, nPTRF));

1
2

1
2
3
4
5
6
7
8
9
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Hardware Multi-Address Atomics - LexOrder

• Lexicographical Order (lexorder) 
takes into account the limited 
resources.

• This new order was tailored to only 
take into account the cache sets.

• In this specific way, cache is forced to 
be filled from set 0 to set n.
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Hardware Multi-Address Atomics - Example
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Hardware Multi-Address Atomics

• Minor modifications to:
• Directory
• L1 Dcache
• Decode (to support the new instructions)

• Added an extra unit attached to the LSU
• Provides all the logic required for:

• Tracking
• Ordering
• Locking
• Unlocking

Directory
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Fetch
Decode

Rename

R
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Q
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LexOURegister
File

Writeback

Commit
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LexOU
Logic

Lock Queue

Addr
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Hit Con
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Hardware Multi-Address Atomics – Deadlocks - Private
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Hardware Multi-Address Atomics – Deadlocks - Private
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Hardware Multi-Address Atomics – Deadlocks - Shared
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Hardware Multi-Address Atomics – Example (conflict)
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Hardware Multi-Address Atomics – Example (conflict)

30

Core

0

Private Cache

Directory
a
b

b

b'
c

b
a

a

c



Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

Hardware Multi-Address Atomics – Example (conflict)
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Hardware Multi-Address Atomics – Example (conflict)
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Hardware Multi-Address Atomics
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Lock-Free TSX MAD Atomics

Multi-Address Atomics reduces up to almost 80% the execution time when compared against the basic 
implementation done with mutex locks (normalized)
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CLEAR Bounding TM to a single retry

I got it, 4 is not enough, and it is hard to write...
How about n-Addresses but with 1 retry?

Published at:
- ASPLOS 2024
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CLEAR: Bounding TM to a single retry - Objective

• GOAL: Enable concurrent and non-speculative execution of ARs, without modifying the software/ISA
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CLEAR: Bounding TM to a single retry - Objective

• GOAL: Enable concurrent and non-speculative execution of ARs, without modifying the software/ISA

• KEY QUESTION: Can the hardware learn the memory footprint of ARs at runtime?

• If so, if a retry is needed, 
• cachelines can be locked following a non-deadlocking global order, 
• and the AR can be executed non-speculatively (no more retries needed)

33
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CLEAR: Bounding TM to a single retry - Memory

34

• To execute an Atomic Region non-
speculatively is to know the memory 
footprint on advance before executing

• Can the hardware learn the memory 
footprint?



Eduardo José Gómez Hernández PhD Thesis Defense 3rd June 2025

CLEAR: Bounding TM to a single retry - Memory

• To execute an Atomic Region non-
speculatively is to know the memory 
footprint on advance before executing

• Can the hardware learn the memory 
footprint?

• Most ARs do not change their memory 
footprint on retries
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CLEAR: Bounding TM to a single retry - Usage

35

/* Lock */
LOCK(gl->PotengSumLock);
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
UNLOCK(gl->PotengSumLock);

1
2
3
4
5
6• What about the previous critical section 

we have been discussing?
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UNLOCK(gl->PotengSumLock);
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we have been discussing?

/* CLEAR? */
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CLEAR: Bounding TM to a single retry - Usage

35

/* Lock */
LOCK(gl->PotengSumLock);
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
UNLOCK(gl->PotengSumLock);

1
2
3
4
5
6• What about the previous critical section 

we have been discussing?

• In the case of a config, the hardware has 
to take into account 3 addresses for read-
write (also depending on the compiler 
another 3 for read-only)

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Write Read Local
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CLEAR: Bounding TM to a single retry – Types of ARs

36

Immutable

Memory footprint does never 
change between retries.

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
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*PTRF = *PTRF + LPTRF;
SECTION_END;
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CLEAR: Bounding TM to a single retry – Types of ARs

36

Memory footprint does never 
change between retries.

/* CLEAR? */
SECTION_BEGIN;
*POTA = *POTA + LPOTA;
*POTR = *POTR + LPOTR;
*PTRF = *PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6

Mutable

Because of the indirection,

/* CLEAR? */
SECTION_BEGIN;
data = *ptr;
data->POTA = data->POTA + LPOTA;
data->POTR = data->POTR + LPOTR;
data->PTRF = data->PTRF + LPTRF;
SECTION_END;

1
2
3
4
5
6
7

Because of the branch 
(depending on a memory 
location), 

/* CLEAR? */
SECTION_BEGIN;
if (*wannabe > 5) {
    *POTA = *POTA + LPOTA;
    *POTR = *POTR + LPOTR;
    *PTRF = *PTRF + LPTRF;
}
SECTION_END;

1
2
3
4
5
6
7
8

memory footprint may change between retries

Immutable
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CLEAR: Bounding TM to a single retry – How?

• CLEAR executes the AR in two different, but collaborative steps:
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● An speculative attempt to execute the AR
● During the attempt, the processors learns the structure of the AR
● If the execution is successful (no conflicts), practically no overhead over baseline
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CLEAR: Bounding TM to a single retry – How?

• CLEAR executes the AR in two different, but collaborative steps:

1. Discovery
● An speculative attempt to execute the AR
● During the attempt, the processors learns the structure of the AR
● If the execution is successful (no conflicts), practically no overhead over baseline

2. Re-Execution
● Only executed if a confict was found during discovery
● If possible, the execution can be made non-speculatively
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CLEAR: Bounding TM to a single retry - Discovery

• Aborts are delayed until the end of the AR
• Because we want to processor to learn the 

full AR

• Learns the memory accesses and the 
immutability of the AR

• This is done by tracking branches and 
indirections propagated by registers

• When reaching the end of the AR:
• If no pending abort -> complete!
• If an abort is pending -> decide!
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CLEAR: Bounding TM to a single retry - non-speculative

• Execution without any speculation support (no more retries are guaranteed)

• Addresses are locked in cache, following a non-deadlocking manner

• When the execution finished, all the locked addresses are unlocked

39
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Unlock memory
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CLEAR: Bounding TM to a single retry - speculative

• Execution with speculation support 
• to recover in case of a new conflict

• Written (and conflicting) addresses are locked in cache
• to prevent conflicts

• When the execution finishes (either successfully or not), 
all the locked addresses are unlocked

• As the section is mutable, it is marked to prevent future 
discovery attempts

40
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CLEAR: Bounding TM to a single retry - Implementation

41
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CLEAR: Bounding TM to a single retry

CLEAR shows over a 22% improvement over the baseline Requester Wins
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CLEAR: Bounding TM to a single retry

CLEAR reduces the amount of aborts per commit from 8 to 2
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CLEAR: Bounding TM to a single retry

CLEAR when implemented atop Power-TM offers 23% improvement over Power-TM
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Conclusion

• Non-speculative and concurrent execution of critical sections is a problem far from being solved

• Splash-4 try to show why this issue matters and why the community needs to continue updating 
benchmarks

• Developed a methodology that allows non-speculative, efficient, and deadlock-free, to lock multiple 
cachelines at the same time to perform a multiple address atomic operation

• Introduced a new method that can determine the data used by the section and perform a  
non-speculative re-execution of the section to guarantee its success in just one retry
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Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations. 
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Future Lines

• The locking is assumed to be executed in order, which may introduce a bottleneck in certain situations. 

● One lex order may not be enough, this happens with two or more shared structures that have enough 
capacity but with different indexing policies

● Explore is the combination of locking and SIMD instructions

● The Splash benchmark suite still has some issues

● We wanted to explore how the compiler could help with the conversion of critical sections and 
transactions

47
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Thank you!

Questions?
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Splash-4

Splash-4 when executed in the gem5 simulator shows significant scalability improvements
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CLEAR

114
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Hardware Multi-Address Atomics – Deadlocks - MSHRs

115
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Hardware Multi-Address Atomics – Deadlocks - MSHRs
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Private Cache

Lock Queue
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Replacements when the eviction buffers are occupied must be taken in the cache itself (in-situ)
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Hardware Multi-Address Atomics
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Lock-Free TSX MAD Atomics

Multi-Address Atomics reduces the amount of instructions commited even further than the lock-free 
approaches.
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