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Abstract
Gómez Hernández, E. J. 2025. Advancements towards non-speculative concurrent
execution of critical sections. (Avances hacia la ejecución concurrente y no especulativa de
secciones críticas). Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology 2520. 74 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-2437-1.

Parallel programs require, besides the cache orchestration, another mechanism that guarantees
synchronization among other threads of the same program.These synchronization mechanisms
will induce overheads, by slowing down certain operations and stalling threads, among many
others, to comply with the requirements established by the programmer.

The thesis's objective is the efficient execution of critical sections, that is, regions of code that
must be executed atomically.The most efficient method is the concurrent and non-speculative
executions of these sections.To achieve this, we present the 3 steps we have taken:1) single-
atomic instructions can be used to implement non-speculative critical sections, therefore, we
develop an updated version of the well-known Splash benchmark suite that uses single-address
atomic instructions to implement most of the critical sections (Splash-4);2) a new set of multi-
address atomic instructions, and a methodology on how to efficiently implement them, that can
be used for small critical sections (MADs);3) without the direct intervention of the programmer,
a more generic method that limits the retries required to execute contended critical regions
(CLEAR).

For an efficient evaluation of the results, we have used the most up-to-date tools possible in
each case, and even, when possible, real machines instead of simulations.For the simulations,
we have used the gem5 simulator, at all times performing multiple runs.The simulator has been
configured to emulate, as reliably as possible, processors based on the latest intel generations.

In our first step, Splash-4, we have managed to reduce the execution time by using 64-
cores by 50%, while maintaining the original structure and algorithms.In the second objective
(MADs), the new atomic instructions implemented, reduce execution time by 80% compared
to the classical lock mechanism, and by 60% by using a transitional memory technique similar
to intel TSX, adding only 68 bytes per core.Finally, CLEAR is able to limit the number of
re-executions of critical sections executed under speculative methods, increasing by 35% the
number of sections that complete on the first retry, and reducing from 37% to 15% the number
of sections that need to reach fallback. All this improving the execution time by 35% against an
Intel TSX implementation and 23% against PowerTM.
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non-speculative execution.
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{L}+ u = {L+ u} ⇐= ∀l ∈ {L} : l < u
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