
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2520

Advancements towards non-speculative
concurrent execution of critical
sections

EDUARDO JOSÉ GÓMEZ HERNÁNDEZ

ACTA UNIVERSITATIS
UPSALIENSIS

2025

ISSN 1651-6214
ISBN 978-91-513-2437-1
urn:nbn:se:uu:diva-552947

Dissertation presented at Uppsala University to be publicly examined in Salón de Grados,
Facultad de Informatica (Building 32), University of Murcia, Murcia (Spain), Tuesday, 3 June
2025 at 16:00 for the degree of Doctor of Philosophy. The examination will be conducted
in English. Faculty examiner: Professor Daniel Sorin (Duke University).

Abstract
Gómez Hernández, E. J. 2025. Advancements towards non-speculative concurrent
execution of critical sections. (Avances hacia la ejecución concurrente y no especulativa de
secciones críticas). Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology 2520. 74 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-2437-1.

Parallel programs require, besides the cache orchestration, another mechanism that guarantees
synchronization among other threads of the same program.These synchronization mechanisms
will induce overheads, by slowing down certain operations and stalling threads, among many
others, to comply with the requirements established by the programmer.

The thesis's objective is the efficient execution of critical sections, that is, regions of code that
must be executed atomically.The most efficient method is the concurrent and non-speculative
executions of these sections.To achieve this, we present the 3 steps we have taken:1) single-
atomic instructions can be used to implement non-speculative critical sections, therefore, we
develop an updated version of the well-known Splash benchmark suite that uses single-address
atomic instructions to implement most of the critical sections (Splash-4);2) a new set of multi-
address atomic instructions, and a methodology on how to efficiently implement them, that can
be used for small critical sections (MADs);3) without the direct intervention of the programmer,
a more generic method that limits the retries required to execute contended critical regions
(CLEAR).

For an efficient evaluation of the results, we have used the most up-to-date tools possible in
each case, and even, when possible, real machines instead of simulations.For the simulations,
we have used the gem5 simulator, at all times performing multiple runs.The simulator has been
configured to emulate, as reliably as possible, processors based on the latest intel generations.

In our first step, Splash-4, we have managed to reduce the execution time by using 64-
cores by 50%, while maintaining the original structure and algorithms.In the second objective
(MADs), the new atomic instructions implemented, reduce execution time by 80% compared
to the classical lock mechanism, and by 60% by using a transitional memory technique similar
to intel TSX, adding only 68 bytes per core.Finally, CLEAR is able to limit the number of
re-executions of critical sections executed under speculative methods, increasing by 35% the
number of sections that complete on the first retry, and reducing from 37% to 15% the number
of sections that need to reach fallback. All this improving the execution time by 35% against an
Intel TSX implementation and 23% against PowerTM.

Keywords: Computer Architecture, microarchitecture, atomic instructions, benchmark suite,
non-speculative execution.

Eduardo José Gómez Hernández,

© Eduardo José Gómez Hernández 2025

ISSN 1651-6214
ISBN 978-91-513-2437-1
URN urn:nbn:se:uu:diva-552947 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-552947)

1-address immutable
critical sections

4-addresses immutable
critical sections

Atomic
instructions

Multi-address
atomic instructions

CLEAR Bounded
speculative retries

Future Work

C
ri

ti
ca

l S
ec

ti
on

 S
iz

e
/

 T
y

pe

SPLASH-4:
An update on the SPLASH
Benchmark Suite focus
on synchronization

MAD Atomics:
A general method to
perform non-speculative
updates up to 4 addresses

CLEAR:
Limit the maximum retries
of SLE and HTM by cache
locking and non-
speculative execution

Future Work:
Allow the non-speculative
execution of any critical
section

n-addresses
immutable/mutable

critical sections

n-addresses
immutable/partially mutable

critical sections

I

II

III

Private
Structures

Shared
Structures

Private
Structures

Private
Structures

Interconnection

 mutex_lock(Q)
 b++
 a++
 mutex_unlock(Q)

Thread 1

 mutex_lock(Q)

Thread 2

 mutex_lock(Q)
 b++
 a++
 mutex_unlock(Q)

 mutex_lock(P)
 c++
 d++
 mutex_unlock(P)

Thread 3

←↩

←↩

←↩

 start_barrier(3)

Thread 1 Thread 3Thread 2

 start_barrier(3)

 start_barrier(3)

 end_barrier(3) end_barrier(3) end_barrier(3)

←↩

105

104

←↩

←↩

←↩

∼

∼
∼

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

20

21

22

23

24

20

21

22

23

24

20

21

22

23

24

25

20

21

22

23

24

25

{L}+ u = {L+ u} ⇐= ∀l ∈ {L} : l < u

4

66

15

4

15

4 4

66

15

192

Shared Inclusive Structure

106

81

53

5

Core 0
Lock Queue

259

113

57

9

Core 1
Lock Queue

5 9 5 57 9 53

Lo
ck
in
g
O
rd
er

1 2

5 57 9 53

3

81 113

Shared Inclusive

Structure

a b

c d

e f

g h

106

82

53

4

Core 0
Lock Queue

259

114

57

8

Core 1
Load-Store

4 b

Lo
ck
in
g
O
rd
er

1

Victims' Cache

a

8 b

c 53

2

4 d

8 b

57 53

3

4 c

8 b

57 53

e 82

4

4 f

8 b

57 53

e 114

g h

5

4 82

8 b

57 53

e 114

g h

6

4 82

106

{L}+ u = {L+ u} ⇐=

∣
∣
∣
∣

sizeof{L+ u} ≤ min(assoc)

∀l ∈ {L} : LexOrder(u) ≥ LexOrder(l)

3×n

mutex_lock(Q)
b++
a++
mutex_unlock(Q)

a

dmad_inc_inc(&b, &a)
b

u_lock(&b)
u_lock(&a)
b++
a++
u_unlock(&a)
u_unlock(&b)

c

u_lock(&a)
u_lock(&b)
b++
a++
u_unlock(&b)
u_unlock(&a)

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1
5
.6
5

1
2
.6
7

2
2
.1
8

1
2
.0
9

5
.3
4

1
.8
2

5
.3

4
.9

5
.9
6

6
.9
5

8
.2
9

6
.4
7

4
.3
2

1
.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2
.0
3

2
.6
4

1
.5

1
.2
3

1
.4
2

3
.1
9

1
.6

1
.2
2

1
.3
1

1
.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2
8
.5
5

2
6
.6
2

1
3
.3
6

6
.7
3

1
.6
9

9
.0
3

8
.3
1

7
.2
1

6
.6
1

2
.5
5

1
.2
7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1
.7
2

3
.1

2
.1
2

1
.2
9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

non-Speculative
Cache-Locking

Speculative
Retry

Atomic Region

Analysis

Core

Structures
Overflow?

No
Can

hardware lock the
address set?

Is there any

indirections?

Yes

Yes

Yes

No

No

Fallback
Speculative

Cache-Locking

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1
.2
1

1
.2
5

0

1

2

3

4

5

6

7

8

8
.8
5

3
1
.2
3

1
9
.1
4

8
.8
9

2
0
.2
4

1
9
.9
8

1
4
.7

1
0
.1
8

0

1

2

3

4

5

6

7

8

1
8
.7
9

8
.2
5

3
0
.4
2

1
9
.1

1
0
.9
4

1
8
.8
8

2
0
.3
7

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 2520

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-552947

ACTA UNIVERSITATIS
UPSALIENSIS

2025

	Abstract
	Acknowledgement
	List of papers
	Contents
	List of Tables
	List of Figures
	List of Listings
	1 Abstract
	2 Sammanfattning
	3 Resumen
	4 Introduction
	4.1 Opportunities
	4.2 Contributions

	5 Background
	5.1 Cache coherence
	5.2 Parallel benchmark suites
	5.3 Synchronization primitives
	5.4 (Single-Address) atomic instructions
	5.5 Multi-address atomic instructions .
	5.6 Speculative execution of critical sections
	5.7 Non-speculative and concurrent execution

	6 Methodology
	6.1 Simulator
	6.2 Real Machine
	6.3 Benchmarks
	6.4 Methods
	6.5 Metrics

	7 Splash-4
	7.1 Introduction
	7.2 Synchronization Issues
	7.3 Efficient synchronization
	7.4 Results

	8 Hardware Multi-Address Atomics
	8.1 Introduction
	8.2 Locking order
	8.3 Multi-Address atomic instructions
	8.4 Results

	9 cleAR: Bounding TM to a single retry
	9.1 Introduction
	9.2 High-contended immutable transactions
	9.3 Bounding Retries
	9.4 Results

	10 Conclusion and Future Lines
	10.1 Conclusion
	10.2 Future Research Lines

	Bibliography

