Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2520

Advancements towards non-speculative
concurrent execution of critical
sections

EDUARDO JOSE GOMEZ HERNANDEZ

ACTA UNIVERSITATIS ISSN 1651-6214
UPSALIENSIS ISBN 978-91-513-2437-1
2025 urn:nbn:se:uu:diva-552947

Dissertation presented at Uppsala University to be publicly examined in Salén de Grados,
Facultad de Informatica (Building 32), University of Murcia, Murcia (Spain), Tuesday, 3 June
2025 at 16:00 for the degree of Doctor of Philosophy. The examination will be conducted

in English. Faculty examiner: Professor Daniel Sorin (Duke University).

Abstract

Goémez Hernandez, E. J. 2025. Advancements towards non-speculative concurrent
execution of critical sections. (Avances hacia la ejecucion concurrente y no especulativa de
secciones criticas). Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology 2520. 74 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-2437-1.

Parallel programs require, besides the cache orchestration, another mechanism that guarantees
synchronization among other threads of the same program.These synchronization mechanisms
will induce overheads, by slowing down certain operations and stalling threads, among many
others, to comply with the requirements established by the programmer.

The thesis's objective is the efficient execution of critical sections, that is, regions of code that
must be executed atomically.The most efficient method is the concurrent and non-speculative
executions of these sections.To achieve this, we present the 3 steps we have taken:1) single-
atomic instructions can be used to implement non-speculative critical sections, therefore, we
develop an updated version of the well-known Splash benchmark suite that uses single-address
atomic instructions to implement most of the critical sections (Splash-4);2) a new set of multi-
address atomic instructions, and a methodology on how to efficiently implement them, that can
be used for small critical sections (MADs);3) without the direct intervention of the programmer,
a more generic method that limits the retries required to execute contended critical regions
(CLEAR).

For an efficient evaluation of the results, we have used the most up-to-date tools possible in
each case, and even, when possible, real machines instead of simulations.For the simulations,
we have used the gem5 simulator, at all times performing multiple runs.The simulator has been
configured to emulate, as reliably as possible, processors based on the latest intel generations.

In our first step, Splash-4, we have managed to reduce the execution time by using 64-
cores by 50%, while maintaining the original structure and algorithms.In the second objective
(MAD:s), the new atomic instructions implemented, reduce execution time by 80% compared
to the classical lock mechanism, and by 60% by using a transitional memory technique similar
to intel TSX, adding only 68 bytes per core.Finally, CLEAR is able to limit the number of
re-executions of critical sections executed under speculative methods, increasing by 35% the
number of sections that complete on the first retry, and reducing from 37% to 15% the number
of sections that need to reach fallback. All this improving the execution time by 35% against an
Intel TSX implementation and 23% against PowerTM.

Keywords: Computer Architecture, microarchitecture, atomic instructions, benchmark suite,
non-speculative execution.

Eduardo José Gomez Hernandez,
© Eduardo José Gomez Hernandez 2025
ISSN 1651-6214

ISBN 978-91-513-2437-1
URN urn:nbn:se:uu:diva-552947 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-552947)

To my family and friends

Acknowledgement

Developing a doctoral thesis is never an easy task. This is the conclusion, but
also a new beginning, to my learning process. This challenge did not start 5
years ago, it started close to 8 years in the past. I had never anticipated that the
number of life changes during this time would be that large. Like it is always
said, “We walk on giant’s shoulders”. I would like to thank every person that
has been there during these years.

First, to Raul, my partner, my love. I found you when I was in my worst
moments, | just exited several months of depression and some romantic issues.
We have been distant friends for a long time ago, but we never connected that
much. But, that day, in Barcelona, just for fun, it was the best day of my
life. Since then, I trust you, I share all this with you. At the time of writing this
thesis, we have been together for almost 3 years. [will save all the experiences
we have been living during this time and the travels we have done in my heart
forever. I love you. I just want to add, many thanks for teaming up with me in
the biggest challenge of all, life.

To my parents (Isabel and Toméas) and my brother (Miguel). Things are
hard, I know that my relationship with my brother is not as good as you always
expected. I wanted to thank you for allowing me to do what I wanted to do,
and to support me in the hard times. But most of all, thank you for accepting
me like I am, with my oddities. Miguel, even if we have our differences, you
also started a PhD after [started mine, and I hope things go well for you. Even
after those fights we always have as brothers, many thanks for being there.

To my grandparents. You are no longer with us, but you have been very
important in my life. Lelo, 1ela, thank you so much for teaching and caring
about me all this time. Abuelo, abuela, even without being that close, you
have been there, and I will always remember you. All of you have planted
a seed in me and now it has bloomed. Many thanks for all of your time and
effort. Just let me add, that I am very happy and very proud of being your
grandson.

To my partner’s parents and sister. Thank you so much for hosting me on
those trips to Barcelona. We have also shared good and bad moments. It was
great to see one of your dreams come true (your new house). Julia, I am so
glad we were able to exchange books on every trip I made, it was great to
have someone close that have similar reading interests. We need to make that
reading club a reality.

To the rest of my family. You are a big family, I am not kidding, but even
after those dad jokes that instead of breaking the ice, they froze the surrounding

air, you have been there. Usually to have a happy time. I remember very clearly
those moments when you all met together, and because I was in Sweden, you
sent me videos of you having fun, in part to encourage me to join you the next
time. Thanks for being who you are.

To my “Morenos” and “TechCraft ESP” friends. This is a bit hard. [am sure
that I would not be there if it were not for you. The day that a friend (Javi) told
a teacher that I used to play chess, I met Radixan, my best friend, the first one
to make a drastic change in my life. “TechCraft ESP” has influenced me so
much, and [want to thank my friends Radixan and Jona for helping me there to
build a dream. Also, I do not forget most of the players that have been around
the server. “Morenos”, the community where I met most of my friends. With
special attention to Arekusanda, Sucraris (ArisNyan), and Anveloy. You are
the best friends I have ever had. Also, Zoiris, thank you for sharing your time
with me in those really bad moments [had. I want to give special thanks to
Matu, Micki, Nil, and all the friends in the community that have been part of
my life. To all of you, thanks.

To my World of Warcraft Guild friends (Ultimo Try - Tyrande). I am sorry
that I left the game, and because of that, interacting with some of you has
become a bit hard. But I want to say, thank you. From our mother, I[Imatar, to
our breakable tank Akodo. Of course, I will never forget all those moments,
all those raids, all those screams. Also, I keep a special space in my mind for
Hati, Icelus, Blind, Eretikos, Kya, Kudo, Kysle, Mainal, Pelo, Volthum, and
many more that have been coming and leaving on each big update. Thank you
for supporting me, but also for all those nights stuck in the raid bosses, and
mythic+.

To Jose Manuel Garcia Carrasco, thanks to you, I am here. At the third of
my bachelor’s I was not expecting to be doing some research, I even had an
offer to work with some friends on a topic I loved at the time. However, that
email, after finishing AOC, and my first experience doing some research was
the ignition spark of this engine. I know, for sure, that if it was not for that
email, [would not be here right now.

To JuanMa, so many hours talking, discussing, and supporting each other. I
remember very clearly that day that you went into the laboratory and told me
about Alberto looking for me to work on the ECHO project. Not only that but
working alongside you was a pleasure. You have taught me a lot of technical
things. But technical discussions are not everything, you have taught me how
to develop solutions, but also about life itself. Many thanks for all this time.

To my advisors Alberto and Stefanos. First of all, sorry for being so an-
noying, but many thanks for all the support you gave, and are still giving me.
Those moments in Uppsala, the discussions on the whiteboard, that evening
working in the HPCA PC meeting, and the messages we exchanged, of it are
part of my precious memories that [will never forget. The only thing I regret
was not using my time there in Uppsala better to learn much more from you.
Alberto, you have introduced me to this lovely field, teaching me why most

of my previous knowledge was wrong, teaching how this system works. Each
discussion I had, and still have, with you is so fulfilling. Also, thank you so
much for all those days we were able to talk outside the university and the
academic field. Thank you so much.

To my colleagues at the University of Murcia: David, Paco, Ashkan, Sawan,
Nikitin, Sebas, Agus, Nico, Pascual, Victor, Adrian, Ruben, Manolo, Ricardo,
Juan Luis, Alexandra, and everyone in the department. Those stressful mo-
ments with David, those discussions and happy moments with Paco, those long
discussions with Ashkan, those jokes with Sawan, those dad jokes with Agus,
those HTM tantrums with Nikitin, there are so many more things that it would
take pages to enumerate. I just want to say, thank you, everyone.

To my colleagues at the Uppsala Universitet: CH, Per, Chris, David, Gustaf,
Anirban, Pavlos, Hassan, Oskar, Ali, Rashid, Ahmed, Shiming, Marina, Alireza,
Johan, Yuan, and many more. Thank you for welcoming me and supporting
me during the year I spent there. Working with you, going to midsommar, and
living in Uppsala, has been a pleasure.

Paco, you have listened to me in the weak moments and given us a lot of
support, many thanks for being there. Ester, you are not only a cleaner lady,
but you are also a friend, I love those days talking, they have been very inspi-
rational. The rest of the university staff, your support is invaluable.

To my students, I am not the best teacher, but it was special to see all of
you growing up and where you are right now. I would like to mention Nico,
Alvaro, and my 2024 SOEAR students (Pascual, Victor, Arturo, Adrian, and
Emilio). Some of you are now colleagues, it was impressive to see how much
you have learned and improved in these years, you have been part of keeping
up this motivation engine we have inside. Now, most of you are teaching me
new things.

To all of you, thank you very much for making all of this possible.

List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Eduardo José Gémez-Hernandez, Juan M. Cebrian, Stefanos Kaxiras,
Alberto Ros, ”Splash-4: A Modern Benchmark Suite with Lock-Free
Constructs”. 2022 IEEE International Symposium on Workload
Characterization (IISWC 2022)

II Eduardo José Gomez-Hernandez, Juan M. Cebrian, Rubén Titos-Gil,
Stefanos Kaxiras, Alberto Ros, ”Efficient, Distributed, and
Non-Speculative Multi-Address Atomic Operations”. 54th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO-54)

III Eduardo José Gémez-Hernandez, Juan M. Cebrian, Stefanos Kaxiras,
Alberto Ros, "Bounding Speculative Execution of Atomic Regions to a
Single Retry”. International Conference on Architectural Support for
Programming Languages and Operating Systems 2024 (ASPLOS 2024)

Reprints were made with permission from the publishers.

Contents

Acknowledgement ...l v
LT ADSITACE o 17
2 Sammanfattning ... 19
3 RESUMEI oo 23
4 IntrodUCtION ... 28
4.1 Opportuniti€s ... 29
4.2 ContribDULIONSooooe e 31
5 Background ... 34
5.1 Cache CONGIreNCe ... 34
5.2 Parallel benchmark SUite€s ... 36
5.3 Synchronization primitives ... 37
5.4 (Single-Address) atomic instructions ... 39
5.5 Multi-address atomic INStruCtionsSc.coooieoiieiii 40
5.6 Speculative execution of critical sections ... 41
5.7 Non-speculative and concurrent execution ... 42
6 Methodology ... 43
6.1 SImulator ... 43
6.2 Real Machine ... 43
6.3 Benchmarks ... 43
6.4 MethodS ..o 45
6.5 IMEITICS oo 45
7 Splash-4 47
7.1 IntrodUuCtion ... 47
7.2 Synchronization Issues ... 47
7.3 Efficient synchronization ... 47
T4 RESUILS oo 51
8 Hardware Multi-Address AtOMICScccoooiiii L 54
8.1 Introduction ... 54
8.2 Lockingorder ... 54
8.3 Multi-Address atomic InStructions ... 58

B4 RESUILS .o 58

9 cleAR: Bounding TM to a single retry

9.1 IntrodUCtiON ..o
9.2 High-contended immutable transactions ...
9.3 Bounding Retries ...
0.4 RESUILS oo
10 Conclusion and Future Lines ...
10.1 CONCIUSION ..o
10.2 Future Research Lines ..o

Bibliography

List of Tables

6.1
7.1

7.2

9.1

gemS5 configuration
Splash-3 Synchronization: 64 cores, default entries, each ex-
ecution may vary the numbers a bit, numbers obtained with
our pin tool. St(atic) is the number of instances present in the
code, while Dyn(amic) is the number of instances executed in
TUNEME. . . . o v e e e
Splash-4 Synchronization: 64 cores, default entries, each ex-
ecution may vary the numbers a bit, numbers obtained with
our pin tool. St(atic) is the number of instances present in the
code, while Dyn(amic) is the number of instances executed in
TUNEIME. . . . o o e e
Characterizationof ARs

List of Figures

4.1
5.1

52
53
7.1

7.2
7.3

8.1

8.2

8.3

8.4

8.5

8.6

9.1

9.2
93
9.4

A high-level graph of each contribution organized by papers.
High-level vision of a high-performance architecture with pri-
vate and shared structures.
Mutexexample
Barrierexample,
Execution time when upgrading Splash-3 barriers, atomics
and both -Splash-4- (64-threads on AMD Epyc 7702P)
Splash-3 vs Splash-4 Scalability on AMD Epyc 7702P
Splash-3 vs Splash-4 Scalability in simulated Intel Ice Lake
(gem5-20)
Directly mapped structure causing a conflict that prevents lock-
ing all addresses despite having enough space.
Shared structure conflict because multiple cores lock addresses
in the same set of a shared inclusive structure.
Deadlock scenario because the size limit of the MSHRs, caused
by a core that is not locking addresses
a) Critical section with mutex locks; b) MAD atomic instruc-
tion; ¢) micro-ops generated by the MAD atomic; d) run-time
order of instructions.
Execution time (1 to 64 cores). Data is normalized to the lock
version with the same core count. Deque, MWObject, Bit-
coin, Water-NS, and Water-SP do not have lock-free version.
Intruder does not have a lock or lock-free version, it is nor-
malized against TSX.
Normalized committed instructions (1 to 64 cores). Data is
normalized against the lock version with the same core count.
Deque, MWObject, Bitcoin, Water-NS, and Water-SP do not
have a lock-free version. Intruder does not have a lock or
lock-free version, it is normalized against TSX.
ARs that do not change their accessed cachelines on the first
(79 7228
Decision tree of the execution modes of cleAR
Normalized execution time
Aborts per Committed Transaction

55

List of Listings

5.1
52
53
7.1
7.2
7.3
7.4
8.1

9.1
9.2
9.3

Locking two variables 37
Djistralocking oL 38
While&CAS structure 39
Sense-reversing barriero 48
taskman.c.in 134o 49
multi.c.in90 49
interf.c.in 156 & interf.c.in 167 & interf.c.in 179 50
Two-addresses fetch-and-add atomic operation in gemS5-like

micro-code 58
Inmutable AR. From arrayswap. 64
Mutable AR. From sorted-list. 65

Conditionally Inmutable AR with indirections. From bitcoin. . 65

1. Abstract

Continuing the trend of increasing the performance of individual cores is no
longer an easy task. During the last decades, manufacturers have moved the
focus to adding multiple cores into the same chip (Chip-Multi-Processor or
CMP). This paradigm change has allowed us to continue showing attractive
performance improvements on each chip generation. On ideal conditions, an
application should be able to increase its performance by a factor of the number
of cores available in the chip, but several limitations will prevent the scalability
of these applications.

CMPs are based on the Symmetric Multi-Processing model, where cores
are identical and share the same unified memory space. However, the breach
between memory and computing made each core require its own local high-
speed memory, a cache. During the program’s execution, each cache will start
storing stale data, that is, data that no longer represents the actual expected
value of a memory location. Cache coherence protocols eliminate this issue by
orchestrating data movement between the memory and the caches. Despite the
orchestration done by the coherence protocol, multiple threads may try to read
and write into the same memory location (data race), producing an incorrect
result.

Parallel programs require, besides the cache orchestration, another mech-
anism that guarantees synchronization among other threads of the same pro-
gram. These synchronization mechanisms will induce overheads, by slowing
down certain operations and stalling threads, among many others, to comply
with the requirements established by the programmer.

A big issue when evaluating new proposals is the lack of comparison lines
that are up-to-date and representative. The most used ones are benchmark
suites, but most of them were crafted over 20 years ago. While some of them
try to keep up with the architectural changes of the processors, many are left
behind. One of the most misrepresented capabilities is the synchronization
mechanisms.

The code regions that require synchronization are known as critical sections
(or atomic regions). Depending on the nature and properties of these sections,
different approaches can be used to protect them. Small ones with few ad-
dresses, “fine-grain”, tend to be more efficient, but much harder to develop
and debug; while big ones with several addresses, “coarse-grain”, are trivial,
even automatized, less prone to errors, but much less performant.

Different methods have been developed over the years to facilitate high-
performance coarse-grain critical sections. Hardware Transactional Memory

17

and Speculative Lock Elision are the most famous ones in this context. The
main issue is that they introduce a lot of challenges to hardware designers while
still showing doubts if they are a good approach.

The thesis’s objective is the efficient execution of critical sections, that is,
regions of code that must be executed atomically. The most efficient method
is the concurrent and non-speculative executions of these sections. To achieve
this, we present the 3 steps we have taken: 1) single-atomic instructions can
be used to implement non-speculative critical sections, therefore, we develop
an updated version of the well-known Splash benchmark suite that uses single-
address atomic instructions to implement most of the critical sections; 2) a new
set of multi-address atomic instructions, and a methodology on how to effi-
ciently implement them, that can be used for small critical sections; 3) without
the direct intervention of the programmer, a more generic method that limits
the retries required to execute contended critical regions.

18

2. Sammanfattning

Att fortsitta trenden med att 6ka prestandan hos enskilda kérnor dr inte ldngre
en latt uppgift. Under de senaste decennierna har tillverkarna fokuserat pa att
lagga till flera kdrnor pé ett enda chip (Chip-Multi-Processor eller CMP). Detta
paradigmskifte har gjort det mojligt att fortsdtta att visa upp attraktiva prestan-
daforbéttringar for varje generation av chip. Idealt sett borde en applikation
kunna 6ka sina prestanda med en faktor som &r lika med antalet tillgdngliga
kérnor pa chipet, men det finns flera begrinsningar som hindrar skalbarheten
hos dessa applikationer.

CMP:er bygger pa den symmetriska multiprocessmodellen, dédr kdrnorna
ar identiska och delar samma enhetliga minnesutrymme. Gapet mellan minne
och berdkning innebir dock att varje kdrna behover ett eget lokalt hoghastig-
hetsminne, en cache. Under exekveringen av ett program kommer varje cache
att borja lagra gammal data, dvs data som inte ldngre representerar det faktis-
ka virde som forvéntas fran en minnesplats. Protokoll for cachekoherens eli-
minerar detta problem genom att styra dataforflyttningen mellan minnet och
cacheminnet. Trots den styrning som utférs av koherensprotokollet kan flera
tradar forsoka ldsa och skriva till samma minnesplats (datarace), vilket ger ett
felaktigt resultat.

Parallella program kréver, forutom cache-orkestrering, en annan mekanism
for att sékerstdlla synkronisering mellan andra tradar i samma program. Des-
sa synkroniseringsmekanismer kommer att medféra omkostnader genom att
bromsa vissa operationer, stoppa tradar och mycket annat for att uppfylla de
krav som programmeraren har stillt.

Ett stort problem vid utvdrderingen av nya forslag &r bristen pa aktuella och
representativa benchmarks. De mest anvianda dr benchmark-sviter (eller test-
sviter), men de flesta av dem skapades for mer 4n 20 ar sedan. Aven om vissa av
dem forsoker halla jimna steg med processorarkitekturens férandringar, slapar
manga efter. Det finns nagra testsviter som hianger med i tiden och som till och
med &r prestandanormerande for dagens kommersiella processorer. Problemet
med dessa moderna testsviter &r exekveringstiden. Simulatorerna, med opti-
meringar, kan simulera nagra sekunders simulering efter flera timmar. Det &r
inte mojligt att kora de modernaste uppséttningarna pa dem, vilket tvingar fram
alternativa och oftast foraldrade testsviter. En av de mest felaktigt presenterade
funktionerna &r dock de tidigare nimnda synkroniseringsmekanismerna.

De delar av koden som kriver synkronisering kallas kritiska avsnitt (eller
atomregioner). Beroende pa hur dessa sektioner ser ut och vilka egenskaper
de har kan olika metoder anvéndas for att skydda dem. Smé med fa adres-
ser, finkorniga, tenderar att vara effektivare, men mycket svarare att utveckla

19

och felsoka; medan stora med flera adresser, grovkorniga, &r triviala, till och
med automatiserade, mindre felbenédgna, men till priset av lédgre prestanda. Det
ar valként att atomiska instruktioner med en enda adress &dr det mest effekti-
va sittet att utfora en uppdatering atomiskt i forhallande till resten av appli-
kationstradarna, eftersom de utfor denna synkronisering via hardvara. Ménga
programmerare har dock valt att anvinda las i kritiska avsnitt eftersom de &r
latta att programmera.

Under arens lopp har olika metoder utvecklats for att underlatta grova kritis-
ka sektioner med hog genomstromning. Syftet har varit att delegera till hardva-
ran att fatta basta mojliga beslut i varje givet 6gonblick. I manga fall 4r tanken
att man inte ska beh6va vara inlast, utan fortsitta framat, och i de fall dédr atomi-
citet inte kan garanteras, angra dndringarna och forséka igen. Transaktionsmin-
ne i hardvara och spekulativ lasning dr de mest kdnda i det har sammanhanget.
Huvudproblemet &r att de medfor manga utmaningar for hdrdvarukonstrukto-
rer, samtidigt som det fortfarande rader tvivel om huruvida de 4r en bra metod.

Syftet med avhandlingen &r att pa ett effektivt sitt exekvera kritiska avsnitt,
dvs. omraden i koden som maste exekveras atomiskt. Den mest effektiva meto-
den dr samtidig och icke-spekulativ exekvering av dessa avsnitt. For att uppna
detta presenterar vi de tre steg vi har tagit: 1) enkla atoméra instruktioner kan
anvéndas for att implementera icke-spekulativa kritiska avsnitt, s vi utveck-
lade en uppdaterad version av den vilkidnda Splash-testsviten som anvénder
atomadra instruktioner med en adress for att implementera de flesta av de kri-
tiska avsnitten; 2) en ny uppséttning atoméra instruktioner med flera riktning-
ar, och en metod for hur man implementerar dem effektivt, som kan anvéndas
for sma kritiska sektioner; 3) utan direkt inblandning av programmeraren, en
mer generisk metod som begrinsar antalet forsok som kravs for att exekvera
begriansade kritiska omraden.

For en effektiv utviardering av resultaten har vi anvint de mest aktuella verk-
tygen i varje enskilt fall och dven, ndr det varit mojligt, riktiga maskiner i stéllet
for simuleringar. For simuleringarna har vi anvént gem5-simulatorn och hela
tiden utfort flera korningar och validerat de erhallna resultaten. Simulatorn har
konfigurerats for att sa tillforlitligt som mojligt emulera processorer baserade
pa de senaste intel-generationerna.

Splash-4, den nya versionen av Splash testsvit som vi har utvecklat under
detta examensarbete, ersitter en betydande del av de kritiska sektioner som
implementerats med hjélp av olika typer av konstruktioner. Dessa konstruk-
tioner, som anvénder instruktioner med en adress, kan uttrycka hégnivaope-
rationer som: ”’Om X &r mindre &n det virde som lagras pa adress y, skriv x
pa adress y”. Dessutom har vi inkluderat konstruktioner som implementerar
befintliga operationer i andra atomics, men for datatyper som inte stods, till
exempel “atomically add x and what is stored at address y, and write the result
to y” men for flyttal. Vi har stott pa tva exceptionella situationer: i den ena har
vi delat upp en kritisk sektion i flera enkelriktade sektioner; i den andra har vi
med hjilp av en konstruktion inom en konstruktion lyckats implementera en

20

dubbelriktad kritisk sektion med hjélp av enkelriktade atomics. Kritiska sektio-
ner dr dock inte allt, det finns andra synkroniseringsprimitiver, t.ex. barridrer,
som vi ocksa har ersatt med alternativ som anvénder atominstruktioner med
en adress for att minska overhead for en sddan primitiv. Denna overhead var
sarskilt viktig, eftersom det arbete som ska utforas mellan barriédr och barriér ar
sa litet pd& moderna processorer att exekveringstiden i vissa applikationer helt
dominerades av véntan pa andra tradar.

Pa grund av de stora begransningarna hos atoméra instruktioner med en
adress har utvecklare i manga ar velat ha atoméra instruktioner med flera adres-
ser. Denna typ av instruktioner skulle gora det mgjligt att implementera mer
komplexa kritiska sektioner med samma effektivitet som atomiska instruktio-
ner med en adress, med tanke pa att atomiska instruktioner dr det mest effektiva
séttet att utfora en uppdatering i en riktning atomiskt i férhallande till resten
av applikationens tradar. Detta dr dock inte en enkel uppgift. Nér vi vill lasa
flera minnesadresser maste vi vara extremt forsiktiga sd att vi inte hamnar i
deadlocks dér exekveringen inte kan fortsétta, till exempel trdd 1 har last “x”
och vill lasa “y”, medan trad 2 har last “y” och vill lasa “x”. For att 16sa detta
ar den enklaste 16sningen att anvdnda en global ordning som alla f6ljer: For
att 1asa “x” och “y”, las forst “x” och sedan “y”. Den hér 16sningen fungerar
utmirkt i programvara, dir resurserna antas vara tillrickliga (om &n inte obe-
griansade). Atomiska instruktioner implementerar dock vanligtvis sina 1as pa
cacheminnet, en fysisk struktur med adndliga och vilbegransade resurser.

Hur kan vi implementera atoméra instruktioner med flera adresser om vi har
begrinsade resurser? Svaret vi foreslar dr att vi tar hinsyn till dessa begrans-
ningar nér vi ordnar adresserna som ska blockeras. Genom att f6lja en serie
mycket specifika steg ndr vi utfor en lasning, och anvéinda den lexikografiska
ordningen pa adresserna med hénsyn till storleken pa den privata cachen, har vi
lyckats lasa upp till 4 adresser samtidigt. Med hjdlp av den hiar metoden har vi
implementerat flera olika typer av atoméra adressinstruktioner, inklusive den
vélkdnda compare-and-swap.

Trots genombrottet for atoméra instruktioner med flera adresser ar det fort-
farande en stor utmaning att realisera komplexa algoritmer med dem. En av de
storsta begransningarna, forutom antalet adresser, ér att de adresser som an-
vénds dr fordnderliga. Atomiska instruktioner med en eller flera adresser kra-
ver att de minnesadresser som ska lasas dr kénda i férvidg och inte kan dndras.
En kritisk sektion dr inte fordanderlig om de adresser som anvénds, bade vid
lasning och skrivning, alltid d&r desamma nér den exekveras flera ganger med
samma processorregister. Med andra ord 4r minnesadresserna inte beroende av
andra minnesadresser.

Det skulle vara mycket enklare om maskinvaran sjdlv kunde hitta dessa
adresser, bestimma mutabiliteten i den kritiska sektionen och utféra lasningen
1 rétt ordning utan att programmeraren behover planera den kritiska sektionen
och dirmed bara markera borjan och slutet pa den kritiska sektionen.

21

De tvad mekanismer som befriar programmeraren fran att definiera vilken
typ av ldsning som ska utforas och ldmnar den uppgiften till maskinvaran sjélv
ar transaktionsminne i maskinvaran och undvikande av spekulativa deadlocks.
Béda forslagen uppnér vad de foresatt sig att gora - programmeraren bestim-
mer bara kodregionerna och hardvaran tar hand om att forsoka exekvera dem
sa effektivt som mojligt. Ingen av metoderna &r dock garanterad att gora fram-
steg, vilket innebir att de kan misslyckas och méaste provas pa nytt om ato-
miciteten bryter samman. [bada situationerna 4r den vanligaste I6sningen en
alternativ exekveringsvig som forvirvar ett block (eller en latch) som tvingar
fram atomicitet, pa bekostnad av prestanda.

Men tdnk om vi kunde dra nytta av dessa omf6rsok och lasa de nodvéandiga
minnesadresserna for att sdkerstilla att exekveringen slutfors framgangsrikt ut-
an risk for konflikter? cleAR anvénder den forsta exekveringen for att analyse-
ra det kritiska avsnittet, fa alla minnesadresser och dven analysera beroendena
for att vidlja den optimala exekveringsmetoden for att begriansa antalet omfor-
sok som behovs till 1. Nér det kritiska avsnittet vl dr i korning sldapper cleAR
pa konfliktférebyggande mekanismen for att fa s& mycket information som
mojligt fran den forsta kérningen. Om exekveringen avslutas med en konflikt
viljer cleAR mellan foljande tre alternativ: 1) blockera alla adresser och utféra
en icke-spekulativ exekvering; 2) blockera en del av adresserna och utféra en
spekulativ exekvering; och 3) blockera ingenting och fortsitta med basmeka-
nismen. Om alternativ 1 véljs begrdnsas antalet omforsok till 1 och det finns
ingen ytterligare risk for konflikter. Om den kritiska sektionen inte uppfyller
alla krav for alternativ 1 kan vi d4nda 6ka chanserna till framsteg genom att
blockera de adresser som dr benédgna att orsaka konflikter (alternativ 2). Som
ett sista alternativ kommer cleAR att delegera till den spekulativa mekanism
som anvinds for att hantera de kritiska avsnitt dar den inte kan tillimpa nidgon
av ovanstaende mekanismer.

I vart forsta steg, Splash-4, har vi lyckats minska exekveringstiden genom
att anvinda 64 kiarnor med 50%, samtidigt som vi behallit den ursprungliga
strukturen och algoritmerna. [det andra malet (MADs) minskar de nya atoméra
instruktionerna exekveringstiden med 80% jamfort med den klassiska lasme-
kanismen och med 60% nir man anvénder en teknik for 6vergdngsminne som
liknar intel TSX och bara lidgger till 68 byte per kdrna. Slutligen kan cleAR
begrinsa antalet omkorningar av kritiska avsnitt som exekveras med spekula-
tiva metoder, 6ka antalet avsnitt som slutfors vid férsta omkérningen med 35%
och minska antalet avsnitt som maste na fallback fran 37% till 15%. Allt det-
ta forbattrade exekveringstiden med 35% jamfort med en Intel TSX-liknande
implementation och 23% jamfort med PowerTM.

22

3. Resumen

Continuar la tendencia de aumentar el rendimiento de los nticleos individua-
les ya no es tarea facil. En las ultimas décadas, los fabricantes se han centrado
en afiadir varios nicleos a un mismo chip (Chip-Multi-Processor o CMP). Este
cambio de paradigma ha permitido seguir mostrando atractivas mejoras de ren-
dimiento en cada generacion de chips. En condiciones ideales, una aplicacion
deberia poder aumentar su rendimiento en un factor equivalente al numero de
nucleos disponibles en el chip, pero existen varias limitaciones que impediran
la escalabilidad de estas aplicaciones.

Los CMP se basan en el modelo de multiprocesamiento simétrico, en el que
los ntcleos son idénticos y comparten el mismo espacio de memoria unifica-
do. Sin embargo, la brecha entre memoria y computacion hace que cada ntcleo
necesite su propia memoria local de alta velocidad, una caché. Durante la eje-
cucion de un programa, cada caché empezara a almacenar datos obsoletos, es
decir, datos que ya no representan el valor real esperado de una ubicacion de
memoria. Los protocolos de coherencia de caché eliminan este problema or-
questando el movimiento de datos entre la memoria y las cachés. A pesar de
la orquestacion realizada por el protocolo de coherencia, varios hilos pueden
intentar leer y escribir en la misma posicion de memoria (carrera de datos),
produciendo un resultado incorrecto.

Los programas paralelos requieren, ademas de la orquestacion de la caché,
otro mecanismo que garantice la sincronizacidn entre otros hilos del mismo
programa. Estos mecanismos de sincronizacion induciran sobrecargas, al ra-
lentizar ciertas operaciones, detener hilos, entre muchos otros, para cumplir
con los requisitos establecidos por el programador.

Un gran problema a la hora de evaluar nuevas propuestas es la falta de lineas
de comparacidn actualizadas y representativas. La mas utilizada son las suites
de benchmarks (o conjunto de pruebas), pero la mayoria de ellas fueron crea-
das hace mas de 20 afios. Aunque algunas de ellas intentan mantenerse al dia
con los cambios arquitectdnicos de los procesadores, muchas se quedan atras.
Existen alunos conjuntos de pruebas que se mantienen al dia, e incluso son los
referentes del rendimiento en los procesadores comerciales actuales. El proble-
ma de estos conjuntos modernos es el tiempo de ejecucion. Los simuladores,
con optimizaciones puedes llegar a simular unos pocos segundos de simula-
cion tras varias horas. Resulta inviable ejecutar los conjuntos mas modernos
en ellos, forzando al uso de conjuntos de pruebas alternativos, y mayormente
desactualizados. Atin, asi, una de las capacidades mas tergiversadas son, los
ya mencionados, mecanismos de sincronizacion.

23

Las regiones de cddigo que requieren sincronizacion se conocen como sec-
ciones criticas (o regiones atomicas). Dependiendo de la naturaleza y propieda-
des de estas secciones, se pueden utilizar diferentes enfoques para protegerlas.
Las pequefias con pocas direcciones, grano fino, tienden a ser mas eficientes,
pero mucho mas dificiles de desarrollar y depurar; mientras que las grandes con
varias direcciones, grano grueso, son triviales, incluso automatizadas, menos
propensas a errores, pero a costa de un menor rendimiento. Es bien conocido
que las instrucciones atomicas de direccidon unica son las manera mas eficien-
te de realizar una actualizacién atdémicamente respecto al resto de hilos de la
aplicacion, ya que realizan esta sincronizacion por hardware. Sin embargo, mu-
chos programadores han optado por la secciones criticas usando bloqueos por
su sencillez a la hora de programar.

A lo largo de los afios se han desarrollado diferentes métodos para facili-
tar las secciones criticas de grano grueso de alto rendimiento. El objetivo era
delegar en el hardware para que tomase la decision mas acertada posible en ca-
da momento. En muchos casos la idea es no tomar ningun bloqueo, continuar
hacia delante, y en el caso de que no se pueda garantizar la atomicidad, des-
hacer los cambios y volver a intentar. La memoria transaccional por hardware
y la elision especulativa de bloqueos son los mas conocidos en este contexto.
El principal problema es que introducen muchos retos para los disefiadores de
hardware, al tiempo que siguen mostrando dudas sobre si son un buen enfoque.

El objetivo de la tesis es la ejecucion eficiente de secciones criticas, es decir,
regiones de cddigo que deben ejecutarse atdbmicamente. El método mas eficien-
te es la ejecucion concurrente y no especulativa de estas secciones. Para lograr-
lo, presentamos los 3 pasos que hemos dado: 1) se pueden utilizar instrucciones
atomicas simples para implementar secciones criticas no especulativas, por lo
que desarrollamos una version actualizada del conocido conjunto de pruebas
Splash que utiliza instrucciones atomicas de direccion unica para implemen-
tar la mayoria de las secciones criticas; 2) un nuevo conjunto de instrucciones
atdmicas multiple direccién, y una metodologia sobre como implementarlas
eficientemente, que pueden utilizarse para secciones criticas pequefias; 3) sin
intervencion directa del programador, un método mas genérico que limita los
reintentos necesarios para ejecutar regiones criticas contendidas.

Para una eficiente evaluacion de los resultados, hemos utilizado las herra-
mientas mas actualizadas que nos han sido posibles en cada caso, e incluso,
cuando ha sido posible, maquinas reales en lugar de simulaciones. Para las
simulaciones, hemos usado el simulador gem5, en todo momento realizando
multiples ejecuciones, y validando los resultados obtenidos. El simulador ha
sido configurado para emular, lo mas fiablemente posible, procesadores basa-
dos en las ultimas generaciones de intel.

Splash-4, la nueva version del conjunto de pruebas Splash que hemos desa-
rrollado durante esta tesis, reemplaza una parte significativa secciones criticas
implementadas usando distintos tipos de constructos. Estos constructos, usan-
do instrucciones de direccion tnica, son capaces de expresar operaciones de

24

alto nivel como: “atomicamente si x es menor que el valor almacenado en la
direccion y, escribe x en la direccion y”. Adicionalmente, hemos incluido cons-
tructos que implementan operaciones existentes en otros atomicos, pero para
tipos de datos no soportados como “atomicamente suma x and lo almacenado
en la direccion y, y escribe el resultado en y” pero para punto flotante. Nos
hemos econtrado con dos situaciones excepcionales donde: en una de ellas he-
mos dividido una seccion critica es multiples secciones de una tnica direccion;
en la otra hemos conseguido, usando un constructo dentro de otro constructo,
implementar una seccidn critica de dos direcciones usando atomicos de direc-
cion Unica. Sin embargo, las secciones criticas no lo son todo, existen otras
primitivas de sincronizacion, como las barreras, las cuales también hemos re-
emplazado con alternativas que usan instrucciones atomicas de direccion unica
para reducir la sobrecarga de dicha primitiva. Esta sobrecarga era especialmen-
te importante, debido a que en procesadores modernos, la cantidad de trabajo a
realizar entre barrera y barrera es tan pequefio, que en algunas aplicaciones el
tiempo de ejecucion estaba completamente dominado por esperar a otros hilos.

Debido a las grandes limitaciones de las instrucciones atomicas de unica di-
reccion, los atdmicos de multiple direccidon han sido el deseo de los desarrolla-
dores durante muchos afios. Este tipo de instrucciones permitiria implementar
secciones criticas mas complejas con los misma eficiencia que las instruccio-
nes atomicas de direccion unica, recordemos que las instrucciones atémicas
son la manera mas eficiente de realizar una actualizacion en una direccion de
manera atomica respecto al resto the hilos de la aplicacién. Sin embargo, rea-
lizar esto no es tarea sencilla. Siempre que queramos bloquear multiples direc-
ciones de memoria hay que tener un cuidado extremo con no caer en puntos
muertos donde la ejecucion no puede continuar, por ejemplo el hilo 1 tiene
bloqueado “x”, y quiere bloquear “y”, mientras el hilo 2 tiene bloqueado “y” y
quiere bloquear “x”. Para solucionar esto, la solucién mas sencilla es usar un

e, [}

orden global que todos sigan: Para bloquar “x” e “y”, primero hay que bloquear
“x” y luego “y”. Esta solucién funciona perfectamente en software, donde los
recursos se asumen que son suficientes (sino ilimitados). Sin embargo, las ins-
trucciones atomicas suelen implementar sus bloqueos a nivel de caché, una
estructura fisica con unos recursos finitos y bien restringidos.

(Como podemos implementar instrucciones atomicas de multiple direccion
si tenemos recursos limitados? La respuesta que proponemos es: teniendo en
cuenta esas limitaciones a la hora de ordenar las direcciones a bloquear. Si-
guiendo una serie de pasos muy especificos a la hora de realizar un bloqueo, y
usando el orden lexicografico de las direcciones teniendo en cuenta el tamafio
de la caché privada, hemos conseguido bloquear hasta 4 direcciones simulta-
neamente. Usando este método, hemos implementado instrucciones atdmicas
de multiple direccion de distinto tipo, entre ellos el conocido compare-and-
swap (comparar e intercambiar).

A pesar del gran paso de las instrucciones atomicas de multiple direccion,
realizar algoritmos complejos con ellos sigue siendo un reto importante. Uno

25

de los mayores limitantes, ademas del nimero de direcciones, es la mutabili-
dad de las direcciones usadas. Las instrucciones atdmicas, de unica o multiple
direccioén, requieren que las direcciones de memoria a bloquear se conozcan
de ante mano, no sean mutables. Una seccidn critica no es mutable si al ejecu-
tarla multiples veces con los mismos registros del procesador, las direcciones
accedidas, tanto en lectura como en escritura, son siempre las mismas. O dicho
de otra manera, las direcciones de memoria no dependen de otras direcciones
de memoria.

Seria mucho mas sencillo si el propio hardware fuera capaz de encontrar
esas direcciones, determinar la mutabilidad de la seccidn critica, y realizar el
bloqueo en el orden correcto sin requerir que el programador planifique la sec-
cion critica, y por tanto solo marcando el inicio y fin de la misma.

Los dos mecanismos que alivian a los programadores de definir el tipo de
bloqueo a realizar, y dejando esa tarea al propio hardware son memoria tran-
saccional por hardware y la elision especulativa de bloqueos. Ambas propues-
tas consiguen lo que se proponen, el programador solo determina las regiones
de codigo y el hardware se encarga de intentar ejecutarlas de la manera mas
eficiente que sea posible. Sin embargo, ninguna de las propuestas tiene garan-
tia de progreso, eso quiere decir que pueden fallar y tener que reintentar si se
rompe la atomicidad. En ambas situaciones, la solucion mas empleada es un
camino de ejecucion altenativo que adquiere un bloque (o cerrojo) que fuerza
la atomicidad, a costa del rendimiento.

Pero, ;y si pudiesemos aprovechar esos reintentos y bloquear las direcciones
de memoria necesarias para garantizar que se complete la ejecucién de manera
satisfactoria sin posibilidad de conflictos? cleAR usa esa primera ejecucion pa-
ra analizar la seccion critica, obtener todas las direcciones de memoria, e inclu-
so analizar las dependencias, para seleccionar el método de ejecucion optimo
para limitar el nimero de reintentos necesarios a 1. Una vez la seccion critica
estd en ejecucion, cleAR relaja el mecanismo de prevencion de conflictos para
poder obtener toda la informacion que sea posible de la primera ejecucion. Si
una vez terminada, la ejecucion termina con un conflicto, cleAR elige entre
las tres siguientes opciones: 1) bloquear todas las direcciones y realizar una
ejecucion no especulativa; 2) bloquear parte de las direcciones y realizar una
ejecucion especulativa; y 3) no bloquear nada y continuar con el mecanismo
base. En el caso de seleccionar la opcion 1, el nimero de reintentos esta limi-
tado a 1, y no hay mas posibilidad de conflictos. Sin embargo, si la seccion
critica no cumple con todos los requerimientos para la opcién 1, atin asi pode-
mos aumentar las posibilidades de progreso bloqueando aquellas direcciones
que sean propensas a conflictos (opcidn 2). Como ultima opcion, cleAR dele-
gara en el mecanismo especulativo que se esté usando para manejar aquellas
secciones criticas a las que no sea capaz de aplicar ninguno de los mecanismos
anteriores.

En nuestro primer paso, Splash-4, hemos conseguido reducir el tiempo de
ejecucion al usar 64-cores en un 50%, manteniendo en todo momento la es-

26

tructura y algoritmos originales. En el segundo objectivo (MADs), las nuevas
instrucciones atomicas implementadas, reducen un 80% el tiempo de ejecu-
cién al compararse con el mecanismo de locks clésico, y un 60% al usar una
tecnica de memoria transacional similar a intel TSX, afiadiendo solo 68 bytes
por core. Por ultimo, cleAR, es capaz de limitar la cantidad de rejecuciones
de las secciones criticas ejecutadas bajo métodos especulativos, aumentando
en un 35% la cantidad de secciones que se completan en el primer reintento,
y reduciendo del 37% al 15% la cantidad de secciones que requieren llegar al
fallback. Todo esto mejorando el tiempo de ejecucion en un 35% contra una
implementacion tipo Intel TSX y un 23% contra PowerTM.

27

4. Introduction

Processors’ manufacturers found that increasing the performance of a core
was no longer an easy task. While single-core performance is still on man-
ufacturers’ focus, most of them spend a lot of resources adding multiple cores
on a processor chip (CMP or Chip-Multi-Processor). Compared to the small
performance gains by improving a core, adding more cores allows continu-
ing to show attractive performance improvements on each chip generation.
CMPs, because of their huge performance, have established Symmetric Multi-
Processing (SMP) as today’s standard for high-performance computing. SMP
exploits the concept of having multiple identical cores connected to the same
main memory and devices. Ideally, an application that uses all the available
cores would be able to increase the performance by a factor of the number of
cores used. However, most applications require arbitration where the threads
running on each core require synchronization, that is, sharing data or waiting
for others to catch up.

With the rapid performance increase of the cores, a huge latency breach was
established with the memory. This potential bottleneck forced manufacturers
to integrate local caches on each core to reduce the cost of accessing memory
by keeping local copies of data blocks that will be reused by the core without
having to access memory again. As the execution progresses, potential stale
copies may appear, leading to inconsistencies of the same address accessed
by different cores returning different values. The cache coherence protocol
oversees orchestrating permissions, by giving or revoking them on each cache,
to keep the data coherent between cores.

One simple solution, to keep the coherence of the data, is to notify all the
caches on each operation performed (snooping). Snooping protocols, while
easier to implement, induce a huge penalty that prevents the inclusion of more
cores per chip, leading to their replacement with more complex, directory-
based cache coherence models. The directory is a structure shared by all cores
that map on which cache is each cache block, allowing to revoke or grant per-
missions with limited communication to the nodes that are needed. Despite
the directory taking care of the cacheline orchestration, data races are an issue.
Multiple threads may try to read the same data to later do an update (Shared
Memory Model). Depending on the specific application and the runtime order
of the threads, the result will vary.

For example, in a system with two threads that try to perform an addition
on a shared memory location (x): a = load x; a = a + 1; write
a 1in x; x initially holds the value 125. Thread 1 reads x (125) and saves

28

the value in its local memory a, then thread 2 reads x (125) and also saves the
values in its local memory b'. The execution continues, thread 1 and thread
2 perform the additions (1: a=126 =125+ 1,2: b=126 =125 + 1). When
storing the result, thread 1 will invalidate the cacheline in thread 2, and then
write (overwriting 125 with 126). Thread 2 will follow by doing the invali-
dation and storing the data (overwriting 126 with 126). At the start, we were
expecting that with two threads increasing the value to 125, the result would
be 127, but instead, in this execution, it is 126.

This scenario shows the need for a mechanism that elides threads from read-
ing or writing when synchronization is required. Atomicity is the property that
is not conservated here. In the previous example, one of the threads should
wait until the other one has finished reading, adding, and writing the result.
Waiting means that the program could run slower as some of the threads are
waiting for others to reach a certain point, so programmers should minimize the
amount of synchronization points to increase the concurrency and potentially
the performance of the application.

To fix the scenario, the section of the code that reads, modifies, and writes
back the data needs to be encapsulated into a critical section. Critical sec-
tions guarantee that the code is executed, or appears to be executed, isolated
from the rest of the system. That is, no other core can read the interme-
diate state of the data nor write to it. To encapsulate the code, a lock can
be set up to prevent others from executing that part of the code at the same
time. The previous example can be modified as: lock; a = load x;
a =a + 1; write a in x; unlock. However, while this solution
works, for simple scenarios with only one variable, there is a much better ap-
proach, atomic instructions. Again, the previous example can be modified
as: atomic fetch and increment x;. Beinghardware instructions,
they are much faster than locks and can be implemented in clever ways. For
example, acommon atomic instruction implementation is by locking the cache-
line that the data belongs, preventing other cores from reading or writing to it
without/minor modifications to the core or the coherence protocol.

4.1 Opportunities

During the research and development of a new system, a comparison line needs
to be drawn to evaluate how the proposed changes affect performance, energy
consumption, or any of the other metrics of interest that are being looked to
be improved. The standard current solution is the use of benchmark suites.
Benchmark suites are a collection of applications and inputs that try to evaluate
how a specific system would perform in a real scenario.

"Note that to read the value thread 2 does not need to invalidate or send any message to thread
1.

29

The main issue is how old these benchmark suites are. From the most used
ones (SPLASH [46, 52, 44], SPEC [47], PARSEC [53], STAMP [38], ...) are
crafted over 20 years ago. Some of them try to keep up and continue receiving
updates (like SPEC). Systems, compilers, programmers; all of them change
over time, and quite quickly something that was thought to be the best solution
to a problem, now becomes the worst. An example of this was the algorithm
to exchange values between two variables. An algorithm called xor swap was
used in the past, but with more clever compilers and with new instructions
(xchg) the xor_swap is even worse than using a third variable to perform the
swap. Benchmark suites cannot keep up with these trends and always target
the most recent solutions. Despite the issue that a solution can be better on one
platform and worse on another.

One of the most misrepresented capabilities in benchmarks is the synchro-
nization of parallel programs. Not all parallel programs are “embarrassingly
parallel” [24], a lot of applications require some kind of orchestration between
their work units. These points of synchronization are commonly known as
critical sections/critical regions/atomic regions. Depending on the specific
characteristics of the required kind of synchronization, different solutions may
be applied. 1) Small critical regions that modify a limited set of addresses are
“fine-grain”. They tend to be quite efficient, due to their small size, but they
become a real challenge to be developed. 2) Big critical regions with large sets
of addresses are “coarse-grain”. By default, they are quite easy to use, even
automated in some cases, but with the cost of performance.

Over 10 years ago, the two main developing languages in the world, C and
C++, introduced atomic instructions into their standard [28, 29]. Atomic in-
structions have been demonstrated to be the most efficient way of updating a
variable atomically, and they started to be available in any platform, with some
minor differences [27, 26, 5, 51, 23]. From their introduction in the program-
ming standard, they were no longer limited to be used only in libraries or in
operating system operations (syscall) to manage atomicity, they can be used
by mainstream developers.

“Fine-grain” critical sections require a deep understanding of the data de-
pendency between the different threads in the system. By carefully thinking
about the problem that is being solved, and with the use of the blazing new
standardized atomic instructions, “fine-grain” critical sections can be imple-
mented. However, they can operate on a single-address. For simple scenarios,
atomic instructions directly replace critical sections completely. But, for the
complex ones, some programmers have developed tricks to implement them
with these restrictions, but most developers just prefer to avoid that hustle and
just use mutex lock instead.

Due to its easiness of development and being less error-prone, “coarse-
grain” critical regions are used more often. Research and industry have tried to
develop solutions that make “coarse-grain” critical regions to improve perfor-
mance. Speculative Lock Elision (SLE) and Hardware Transactional Memory

30

(HTM) are the main two approaches to this problem. However, they introduce
a lot more challenges and hardware complexity which shows doubts if they
are a good solution or not. Both approaches execute speculatively until a con-
flict (violation of the atomicity) is found, introducing the concept of retries.
First, the waste of time and energy executing speculatively and then reverting
the changes hoping that in the next retry, there is no conflict. In many cases,
the amount of time required, retrying, to complete the section goes beyond
the time spent if the section was serialized with traditional mutexes. Second,
the pollution of structures and predictors. Depending on the implementation
of the speculative execution and the recovery mechanism, after a retry, certain
structures may not be restored, such as the branch predictor, the return-address-
stack, and even low cache levels. In certain cases, this “pollution” helps the
section to be executed correctly in the next retry [45], but if the execution
path changes or the section is retried multiple times, the accuracy of these,
performance-critical, structures may decline.

4.2 Contributions

Contribution 1 (Splash-4): We propose an updated version of the Splash
benchmark suite that manages to exploit the hardware synchronization capabil-
ities using current up-to-date synchronization instructions. This new version
introduces: 1) a different barrier synchronization primitive optimized for short
waits, and 2) lock-free alternative versions of the majority of the critical sec-
tions using atomic instructions and lock-free constructs. Splash-4, executed
about 50% faster in real hardware, allows the hardware designers to unveil the
real causes that prevent the applications from scaling even more in contempo-
rary.

Paper (D: Eduardo José Gémez-Hernandez, Juan M. Cebrian, Stefanos Kaxi-
ras, Alberto Ros, ”Splash-4: A Modern Benchmark Suite with Lock-Free Con-
structs”. 2022 IEEE International Symposium on Workload Characterization
(IISWC 2022)

Contribution 2 (Multi-Address Atomics): we propose a new set of opera-
tions, and a deadlock-free locking methodology, that can perform atomic up-
dates on multiple addresses relying solely on the coherence protocol and a pre-
defined locking order. In contrast to speculative methodologies, this new set
of operations follows the idea of atomic instructions, being non-speculative,
therefore not requiring undoing work. Each cacheline required is locked with
no extra communication with any other core, just the normal coherence proto-
col messages. Then the operation is executed atomically, and when completed,
the cachelines are unlocked allowing other cores to read and write to/from
them. This methodology allows us to implement Multi-Compare And _Swap
and Multi-Atomic Fetch And Add, among many others, simplifying the de-

31

velopment of these critical sections and increasing their performance in high-
contended scenarios.

Paper @: Eduardo José Gomez-Hernandez, Juan M. Cebrian, Rubén Titos-
Gil, Stefanos Kaxiras, Alberto Ros, “Efficient, Distributed, and Non-Speculative
Multi-Address Atomic Operations”. 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-54)

Contribution 3 (Cache Locking of Atomic Regions): We propose a tech-
nique that bounds the number of retries required to complete a coarse-grain
critical region while keeping the concurrency of the execution. Instead of just
executing speculatively, the structure, addresses, and dependencies of the crit-
ical section can be gathered during the retries. Therefore, using this informa-
tion, a non-deadlocking order can be established to concurrently execute the
section without speculation by locking the data at the cache level. We noticed
that most of the time, in a critical section that is retried with the speculative
solutions, the address set where it performs its operations is the same as dur-
ing the first retry. Therefore, by locking that set of addresses, and preventing
external access, we can guarantee that the section will be complete without
having to retry more times. We go one step further, by completely disabling
the speculative method and executing non-speculative if the address set is im-
mutable, that is, the address set cannot be changed between retries. This can
be seen as converting the critical section into an atomic after the first failed
retry.

Paper @: Eduardo José Gomez-Hernandez, Juan M. Cebrian, Stefanos
Kaxiras, Alberto Ros, "Bounding Speculative Execution of Atomic Regions
to a Single Retry”. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems 2024 (ASPLOS 2024)

Figure 4.1 shows a summary of the contributions of the thesis. Contribution
1 solves 1-address immutable critical sections in a non-speculative way by us-
ing the atomic instructions available in current architectures. Contribution 2
solves up to 4-addresses immutable critical sections with the use of our new
multi-address atomic instructions. Contribution 3 solves any size immutable
and likely-immutable critical sections by analyzing the section in the first spec-
ulative execution and converting it into its non-speculative version. Future
research is open to tackle mutable critical sections.

32

Critical Section Size / Type

Figure 4.1. A high-level graph of each contribution organized by papers.

@SPLASH-4:

An update on the SPLASH
Benchmark Suite focus
on synchronization

1-address immutable
critical sections

Atomic
instructions

(I)MAD Atomics:
A general method to
perform non-speculative
updates up to 4 addresses

4-addresses immutable
critical sections

Multi-address
atomic instructions

n—-addresses @CLEAR:
; CLESF ?\‘l’“:‘cﬁd , |immutable/partially mutable — Limit the maximum retries
peculative retrie critical sections of SLE and HTM by cache

locking and non-
speculative execution

n-addresses Future Work:
Future Work immutable/mutable — Allow the non-speculative
critical sections execution of any critical
section

33

5. Background

In this chapter, we introduce the main concepts needed to fully comprehend the
rest of this thesis fully. Section 5.1 introduces the cache coherence protocols,
this would be the main concept that we will use to build the rest of the thesis.
Then Sections 5.2, 5.3, and 5.4, exploring the synchronization mechanisms
and benchmark suites, are the main bases for our Paper I. While Sections 5.4
and 5.5 show the current state the atomic instructions, which is the base of our
Paper I1. Lastly, Sections 5.6 and 5.7 reach the current state of speculative and
non-speculative approaches, our main target of Paper III.

5.1 Cache coherence

Current CMPs consist of multiple cores with each code including its own pri-
vate cache, usually followed by a shared structure. Before reading and writing
any data to the memory, the block that holds the requested data is commonly
placed into the cache hierarchy. To keep the data coherent between the dif-
ferent private caches, the cache coherence protocol establishes a set of rules,
messages, and procedures to follow on each operation to guarantee that every
core sees the same address with the same value, despite having multiple copies
in separate places.

There are multiple different cache configurations and different protocols
depending on the power and performance target, physical size, and capabilities
desired, among many other variables. The two main variables to consider are
1) which unit gets each message and 2) which states and messages are used to
implement the protocol.

In current high-performance processors, distributed approaches minimize
broadcasting and generate point-to-point messages, and directory-based cache
coherence protocols tend to dominate the market. Other solutions like snoop-
ing protocols can be used in systems where it is not viable to maintain a directory-
based system, or where it is not critical, as they are much simpler to implement.
Other proposals exist, and some of them have even been implemented in real
hardware, but at least in HPC, the directory is the king of them.

There are many more intermediate states in the protocol, but here we men-
tion the main ones that define the permissions that the core has over a specific
cacheline. The simplest coherence protocol is MI. It only has 2 states, modi-
fied (M) and invalid (I). While I represents that the cacheline is not present in
the cache, the state M allows the cacheline to be read and written.

34

The main issue of this simple protocol is that no cacheline can be available
for reading by two different cores at the same time, which is pretty common.
To make the protocol handle this scenario, the state shared (S) can be added.
In the MST protocol, a cacheline that is only read goes to state S instead of M,
saving the latter one for writing (and reading after writing).

An issue arises in MST when a cacheline in the state M is downgraded to S
because another core wants to read it, it has to be written back to the previous
cache-level (or main memory) before completing the transaction. To mitigate
this issue, the state owner (OQ) appears. O allows a cacheline that is still dirty
in the cache, to be forwarded to another core that is transitioning to the state S.
Therefore, MOST was born with a lot of new opportunities.

But, another concern is reached when a core that is the only one that has
read a cacheline wants to update it. It is the unique core that has the cacheline,
and still needs to check for other copies in the system. The state exclusive
(E) solves this issue by keeping track of unique copies in the cache hierarchy.
Because MST was very used because of its simplicity, both MEST and MOEST
became very popular in modern hardware implementations.

Lastly, another state can be introduced to MEST to mitigate a similar issue
that O but for multiple clean shared copies. If a cacheline is shared by multiple
cores, and no one has the ownership, all of them are in state S. Therefore, when
another core wants to read the data, all the caches in the state S will answer
the request, generating a lot of unnecessary traffic in the network. The state
forward (F) solves this issue by taking responsibility for answering the request
for read requests. The MESIF protocol was introduced, and used by some
manufacturers for a long period of time [25, 49].

Both states O and F reduce the accesses to the Lower Level Cache (LLC)
by obtaining the requested data from a remote cache instead of the previous
cache level.

Changes from one state to another are triggered by messages initiated by
the core. Current protocols include a lot of internal messages for managing in-
termediate states, prefetching, and many other features, but the main ones are
the ones that alternate between the main states of the coherence protocol. A
core will, typically, read or write into a cacheline, then, depending on the state,
the cache will answer or forward the message to another structure. GETS and
GETM will bring the data to the cache prepared to be read or written, respec-
tively. A cacheline might be already present in the state S when performing
a write, then a UPGRADE will be triggered. In the case that the cacheline is
present in another cache, and its state is not compatible with the current re-
quest (i.e. performing a write and the cacheline is shared in another cache),
an INVALIDATION is sent to the corresponding cache. If the cacheline that
receives an INVALIDATION is dirty, that is it has been written, it will trigger
a WRITEBACK to write the data back to the lower cache levels. At any mo-
ment, when an operation is completed, an ACK is sent back to inform that it
can continue (if the message also contains data it sends a DATA instead).

35

Private Private Private

Structures Structures Structures

Shared
Structures

Figure 5.1. High-level vision of a high-performance architecture with private and
shared structures.

As a high-level overview (Figure 5.1), each set of private structures (in-
cluding caches) is connected through an interconnection network, but it is also
connected to the shared structures. Please note that shared structures can be,
and usually they are, distributed among the system in slices.

In directory-based protocols, the directory is considered a shared structure
that holds the mapping of where is each cacheline (typically as a compressed
list of sharers). Directories are commonly implemented in a cache-like struc-
ture, sometimes embedded inside the LLC. On each request that requires com-
munication with other caches, first, the directory is checked to decide the des-
tination of the message, and then it is sent to each destination.

5.2 Parallel benchmark suites

SPLASH (or Standford ParalleL Applications for SHared memory), while still
in use, was developed over 20 years ago [46]. Splash-2 was the first major
benchmark suite with the purpose of demonstrating shared-memory scalabil-
ity [52]. Splash-2 has been demonstrated to be an essential instrument in the
development of today’s shared memory multiprocessors. Subsequent updates
(Splash-2X) fixed several coding errors, and performance bugs, and tried to
update the benchmarks to the standards of the time [53]. A particularly im-
portant addition to extending the life of the benchmarks was to support and
include bigger input sizes, allowing to mitigate the cost of the synchronization
and stress newer hardware while being the same benchmarks. The next ver-
sion, Splash-3 [44], was the biggest update on the benchmarks, exposing data

36

races and updating the code to comply with the C standard of memory access
(Data Race Free). After both updates, the Splash Benchmark suite has a tough
time when compiled under the current C compilers and standards, introducing
even more logic and performance bugs. While still relevant, the state of these
benchmarks no longer represents the current situation of processors.

PARSEC (Princeton Application Repository for Shared mEmory Comput-
ers) was released with the same focus as SPLASH, evaluate chip-multiprocessors
with shared memory [9, 8, 53]. However, it has stopped being developed over
10 years ago.

5.3 Synchronization primitives

Coherence protocols avoid having stale data copies in caches; however, they
do not introduce any synchronization properties for the data read in the pro-
cessor. The main reason is that the data inside the registers or the instructions
are beyond the scope of the coherence protocol.

Thread 1 Thread 2 Thread 3
mutex_lock(Q) ' :
b++ mutex ‘OCk(Q) mutex_lock(D)
G++ - C++

d++
mutex_unlock(P)

mutex_unlock(Q)

mutex_lock(Q)
b++
G++
mutex_unlock(Q)

Figure 5.2. Mutex example

Synchronizing between different threads of the same application is quite
expensive, since while synchronizing (waiting for another core to finish) no
useful work can be performed. The cost for synchronization increases with
the amount of threads as the contention increases more cores will be forced
to wait. Therefore, using the correct synchronization primitives in the right
way is essential for performance. There is a vast set of different primitives
that can be used, but each of them has its own issues and oddities. The two
most common synchronization mechanisms used are mutexes (or locks) and
barriers.

Listing 5.1. Locking two variables

37

o -V S SO VR R

mutex lock (mutexes[i]) /1
mutex lock (mutexes[j]) //
do something (i,3) //
mutex unlock (mutexes[j]) /1
mutex unlock (mutexes([i]) //

Mutexes are the most used synchronization primitive. They allow one thread
to execute the contents of the atomic region and make others wait (Figure 5.2).
While fast, when there is little contention, they become an issue under high
contention scenarios, showing a large overhead. The protected atomic region
can be, virtually, as big as the programmer wants (coarse-grain), but large
atomic regions are prone to be more contended, as the amount of time the
lock is taken is bigger. Protecting coarse-grain critical regions is trivial, but
threads will be serialized more than needed. Fine-grain critical regions typ-
ically require more than one mutex per region. The main issue of multiple
mutexes, per critical section, is the risk of deadlocks due to cycles between
threads. However, synchronizing the order is impractical for a huge number
of cores. A global order that guarantees no cycles while not requiring any com-
munication allow each independent core to make decisions on which addresses
to lock in which order without waiting other cores to acknowledge in the order.

Listing 5.2. Djistra locking

// Copy lues t ort lock
11 = i
13 =3
// Check if j is smaller than i
if (13 < 1i) |
t =17
15 = 11
11 =t
}
// Perform the critical sec on
mutex lock (mutexes[1i]) // Acquire lock 1i (the smallest <
one)
mutex lock (mutexes[1j]) // Acquire lock 17 (the biggest <=

one)
do_something (i,3]) / /
values
mutex unlock (mutexes[1lj]) //
mutex unlock (mutexes[li]) / /

vith the original <>

Barriers stop the execution of any thread that reaches this primitive until a
specific amount (or a set) of them have reached the primitive (Figure 5.3). A
barrier allows slower threads to catch up with faster ones to continue executing
together. One of the main uses of a barrier is to wait for a specific phase (or
computation) of an application to finish.

38

= RS - NUREY, B VR R

Thread 1 Thread 2 Thread 3

start_barrier(3)

start_barrier(3)
: start_barrier(3) .
end_barrier(3) end_barrier(3) end_barrier(3)

Figure 5.3. Barrier example

5.4 (Single-Address) atomic instructions

When simple operations atomically access only one memory location, instead
of mutexes, atomic read-modify-write (atomic RMW) operations can be used.

For example, atomic_fetch and add, atomic_fetch and sub, atomic_fetch and inc,

and atomic_fetch_and_xor are some atomic read-modify-write instructions that
perform atomic addition, subtraction, increment, and xor respectively. Atomic
RMW operations are hardware operations that update a memory location while
preventing other threads from seeing or changing the intermediate value. Be-
cause being implemented completely on hardware, they are the most efficient
way of performing those updates.

Despite the coherence protocol does not control the synchronization points
with the processor, it controls when a cache block can leave a cache and enter
another different one. Atomic instructions are implemented, in modern sys-
tems, with the idea of delegating the locking of the data from a synchronization
primitive in software to the coherence protocol. With this premise, an atomic
instruction will notify the coherence protocol that it wants to load some data,
that later will write, and no other core should be able to access it until the write
is performed, informing that the data should be unlocked.

Listing 5.3. While&CAS structure

/% CMAGS * /

var readValue = LOAD(ptr);
var oldValue;
var newValue;
do {
oldvValue = readValue;
newValue = new;
} while ((readValue = CAS (ptr, oldValue, newValue)) !=
oldvalue) ;

Among the possible atomic operations that can be available in an ISA, the
CAS (compare and swap) is the most used one. Its first benefit is being data
agnostic (if it fits into a register). This property allows clever programmers to
create a “While&CAS construct” (Listing 5.3). Its main issue is that it requires

39

retries. The “Compare and Swap” part is atomic, but generating the value to be
written is outside the instruction scope. This small window allows other cores
to interfere. But that scenario means that another thread has been written, so,
at least one thread makes progress.

Non-blocking (lock-free) algorithms heavily rely on atomic operations to
do most of the synchronization. Designing algorithms and data structures with
solely atomic operations is a notoriously challenging task, deadlock-prone, and
extremely hard to debug and verify.

5.5 Multi-address atomic instructions

Implementing the data structures used by applications (or benchmarks) in a
highly efficient way is a big challenge. One of the options is to use atomic
operations but guaranteeing both efficiency and correctness is not an easy task.
Many researchers claimed that if atomic operations were able to access and
update at least two addresses, their work would be much better and simpler [20,
37].

The Motorola 68000 series (1979) was the first processor to implement the
DCAS (Double Compare And Swap) instruction [39]. However, due to its
limitations and problems, the instruction was commonly avoided in produc-
tion. While DCAS is often seen as the solution to lock-free programming, it is
not perfect. Due to its validation complexity and its usefulness compared with
CAS, the community should move to stronger alternatives [15].

More recently, in 2017, Patel et. al presented an implementation of arbi-
trarily large CAS operation on hardware [40]. The proposal introduces a new
structure that reorders locks, the MCAS table, on each entry stores the ad-
dress, the old value, and the new value. Entries are inserted in the table with
an MTS instruction, followed by an MCAS instruction when all entries are set
up. The first issue with this approach is that a context change, interruption,
or any other important event can interfere with the setup of the table. In this
case, there is not a clear mechanism to recover the table contents after the in-
termission. The second main issue is not considering the limited resources of
the hardware. They propose two different versions: 1) MCAS-BASE, a simple
approach that can end up deadlocking by resource limitations; 2) MCAS-OPT,
which deploys a back-off alternative when an invalidation is received, working
as a speculative approach with retries.

Like the software lock situation, locking multiple addresses requires a pre-
determined non-deadlocking order. While in software locks, due to the view
of unlimited resources, a simple order (address order [14]) solves the issue, in
hardware locks there is a limited set of resources that can be occupied without
reaching a deadlock scenario.

Ros and Kaxiras [43] developed a methodology to order the set of addresses
in a non-deadlocking order. They establish a subset of the address location as

40

the lexicographical order. This value can be used to reorder the addresses in a
non-deadlocking manner when there are no conflicts. In the case of a conflict
(two addresses creating a cycle), the set of addresses to be locked (group), is
splitinto two different sets, avoiding the possible deadlock. While in that work,
this is a valid solution, when dealing with addresses set by the programmer, no
such split is possible; all addresses must be locked together in the same group
to guarantee the correctness of the program.

5.6 Speculative execution of critical sections

While the previous techniques are quite interesting, a part of the community
was focused on giving the hardware the capability of managing the isolation
of any kind of critical region. These regions are not only easier to program
but much less error-prone. The two main approaches, that have been hardware
implementations, are Speculative Lock Elision (SLE) [41, 42] and Transac-
tional Memory (TM) [22]. Despite being similar, SLE focuses on eliding the
lock and in case of conflicts, acquiring it; while TM changes the paradigm by
defining regions of codes called transactions that will be executed atomically,
as well as possible.

SLE, and its hardware variant Hardware Lock Elision (HLE), elides execut-
ing the lock function of the critical section and keeping the changes in specu-
lation until the unlock function is found. When an intermission from another
thread is found, the speculative state is discarded, and the lock is taken.

Following a similar idea, Transactional Memory, in its hardware version
(Hardware Transactional Memory or HTM), includes new instructions to de-
limit when a critical section starts and ends (transaction). When the transaction
starts, the speculative state is saved in the case of an abort is required. A re-
turn value is generated to determine the current state of the transaction after
the start, to determine what to do in the case of an abort. In contrast with SLE,
after an abort, the resolution policy is software-made. This software approach
allows us to establish: the number of retries before taking a lock, which kind
of lock, and heuristics to reduce future conflicts, among many other features
to resolve the conflict, hopefully, in the most efficient way.

Many different HTM proposals have been presented to reduce the deficient
performance obtained in simple best-effort implementations. The one that has
obtained most attention is Power-TM [13], driven by its simplicity. When a
transaction aborts, Power-TM sets one transaction into power mode. In power
mode, the transaction has more priority over non-power ones. To implement
this behavior, an extra bit is sent to the memory packages to indicate that the
transaction is running in power mode. Additionally, no transaction can abort a
power mode transaction due to memory conflicts.

41

5.7 Non-speculative and concurrent execution

Speculative approaches have the benefit of being, traditionally, agnostic to
the number of addresses. Nevertheless, its main drawback of requiring re-
tries without any certainty of even completing, that is, there is no guarantee of
progressing in a finite number of steps, makes them require an alternative exe-
cution path that guarantees progress even if it hurts performance and wastes en-
ergy. While atomics and lock-free programming seem non-speculative, some
constructs like “While&CAS” require retries. However, these retries are guar-
anteed to be limited, as for any construct that fails, there is at least one that
succeeds. These constructs are in the middle of both approaches because they
do not speculate the read and write of the data like HTM and SLE, but they re-
quire retries. In this thesis, we consider that this approach is non-speculative as
the data accessed by the critical section and its modification is not done under
speculation, instead, they are protected by the atomic constraints of the atomic
instructions.

Several approaches [7, 50, 6, 2, 48] tried to do innovative things to improve
the execution of critical section, and without speculation, but they fail to allow
multiple threads to make progress at the same time.

To the best of our knowledge, only the combination of lock-free constructs
with atomic instructions (either 1-address or multiple addresses) are the only
non-speculative and concurrent methods for non-speculative and concurrent
execution of critical sections. However, fine-grain locking can also be consid-
ered non-speculative and concurrent, if well implemented, and can be applied
to certain critical sections.

As mentioned our goal is to achieve non-speculative and concurrent execu-
tion of critical sections.

42

6. Methodology

6.1 Simulator

During the development of this thesis, different methodologies have been used
to develop and evalute our proposals. Our main development platform is the
microarchitectural full-system simulator gem5 [10, 35].

GemS5 allows simulating custom CPU architectures with a quite large com-
munity supporting and contributing to it. In this thesis, different versions of
the gem5 simulation have been used, trying to keep up to date with the updates
in order to simulate as faithfully as possible the existing actual systems. In all
our works, several modifications have been used to improve the simulator and
mimic as much as possible the actual hardware. Execution and issue latencies
are modeled as measured on real hardware by Fog [18]. Inside the simulator,
that we run in full-system, we run Ubuntu 16.04 with the Linux kernel 4.9.4.
The cache hierarchy is implemented in detail using Ruby. The interconnection
network is modeled using Garnet [3]. The rest of the parameters are shown in
Table 6.1.

6.2 Real Machine

The simulator is a great tool to evaluate proposals that cannot be tested in actual
hardware. However, our first contribution can, and should, be tested in actual
machines. Therefore, we use an AMD EPYC 7702P CPU with 64 cores @
2GHz, 32KB L1-D and L1-I, 512 KB L2, and 16 MB L3 caches. The system
is running Ubuntu 18.04 with the Linux Kernel 5.4.0.

6.3 Benchmarks

The selection of benchmarks plays a crucial role in the research study. It is
tentative to use the same benchmark as everyone uses, but no benchmark can
stress all parts of the system while matching the computational patterns of all
kinds of workloads. In our case, we have used a combination of Splash bench-
marks [46, 52, 53, 44] for our first contribution, while mainly using mcas-
benchmarks [30] for our second contribution and third contribution, but the
last contribution also includes the STAMP benchmarks [38].

The Splash benchmark suite contains 14 benchmarks made from 11 differ-
ent applications and methods. Barnes and FMM are three-dimensional and

43

Gem5 Version | Paper I: Gem5-20, Paper II: Gem5-19, Paper II: Gem5-21

Core 32-core out-of-order Icelake-like (Skylake-like in Paper II).
Fetch/Decode/Rename width: 5 instructions per cycle; Issue/-
Commit width: 10 instructions per cycle; ROB: 352 uops (224
in Paper II); LQ: 128 entries (72 in Paper II); SQ: 72 entries (56
in Paper II); RAS: 64 entries (16 in Paper I and II); Branch pre-
dictor: LTAGE (TAGE SC L 64K in Paper I and II)

L1 Cache Instructions: 32KiB, 8-way, 1-cycle access latency; Data: 48KiB
(32KiB in Paper II), 12-way (8-way in Paper II), 1-cycle access
latency.

L2 Cache 512KiB (256KiB in Paper II), 8-way, 10-cycle access latency.

L3 Cache 4MiB (2MiB in Paper II), 16-way, 45-cycle access latency.

Memory 80-cycle access latency.

Coherence Three-level MESI protocol interconnected with a crossbar. Di-
rectory has 800% coverage.

HTM Intel TSX-like requester wins, and Power-TM. Best of 1 to 10

retries before taking the fallback lock.

Table 6.1. gem5 configuration

two-dimensional n-body simulations. Cholesky, Radix and LU are matrix fac-
torization algorithms. FFT is a fast fourier transformation. Ocean is a large
ocean simulation. Water is a force molecular simulation of water molecules.
Volrend is a 3D rotating volume renderer. Radiosity perform a light distribu-
tion equilibrium. Raytrace is a 3D raytrace renderer. We use the default inputs
in our evaluation, also commonly known as simsmall.

The mcas-benchmarks contain multiple data structure algorithms imple-
mented using different synchronization methods (mutex lock, lock-free, and
MCAS). Arrayswap [19] exchanges values between two positions in a big ar-
ray. Binary Search Tree (BST) [40, 23], Deque[15, 32, 11,23, 33], Hashmap [21,
12], Queue [40, 23], Stack [23], and Sorted List [23], implement the corre-
sponding data structure. MWObject [16, 17] is a synthetic application that
contains the maximum contention possible by implementing 4 increments to
4 different variables in the same cacheline. We perform 10° operations within
the data structures.

STAMP is a collection of transactional applications. Bayes is a bayesian
network structure learning benchmark. Genome simulates a gene sequencing
benchmark. Intruder simulates a network intrusion detection. Kmeans per-
forms the k-means clustering with a set of data. Labyrinth solves the maze
routing problem. SSCAZ2 is a graph kernel. Vacation is a travel agency reser-
vation system. Yada executes a delaunay mesh refinement. We run STAMP
with the recommended simmedium inputs.

Additionally, we include Bitcoin, an application that performs bitcoin credit
computation on wallets extracted from the blockchain [31]. In parallel, it exe-

44

cutes the movement of money from one wallet to another, so each owner can
see their current balance. Bitcoin runs 10* wallet transactions per thread.

6.4 Methods

The simulator is bootstrapped once, keeping the rest of the system determin-
istic. This is because, in full system mode, gem5 booting Linux is able to
obtain different outcomes on each boot, therefore to keep our results coherent
between reruns, the system is bootstrapped only once.

We run all the applications completely from start to end. However, upon
reaching the start of the region of interest (ROI), defined by the original devel-
opers of the benchmarks, the stats are reset. When the ROI is completed, the
simulation dumps all the statistics.

To include some variability in the executions, a sleep timer is added just be-
fore running the benchmark. This sleep timer is different for each consecutive
run. Note that running the same sleep timer multiple times obtains the exact
same results.

6.5 Metrics

To measure the impact of the proposals, we include a performance metric, an
energy metric, and some impact metrics that depend on the specific proposal
target.

For performance metrics, it is already well known that IPC (Instruction Per
Cycle) does not work well for multithreaded applications [4]. The main issue
for avoiding IPC is its lack of capturing the real progress of the application.
Synchronization points tend to have spin-loops or library calls that end up in
the operating system to check if it should wake up to make progress. These
instructions add to the IPC statistic, but the application does not make any
progress. And, because the amount of time spent in these synchronization
points depends on other threads, the statistic becomes unusable. Our preferred
metric for performance is normalized execution time. It gives actual informa-
tion about how much time the proposals are saving over the original, baseline,
version.

Energy metrics are very hard to capture, first, the tool used (McPAT [34, 1])
only supports up to 22nm of integration, which is quite far from the 10nm,
7nm, 5nm, 3nm, and 2nm currently being used in industry. In our work, we
use two different energy metrics depending on which one is better for each
context. One of them is normalized committed instructions. The idea was that
if the introduced changes are small enough that their energy can be ignored, and
the rest of the statistics are very similar, the energy saved should be somewhat
proportional to the committed instructions reduced. Our second energy metric

45

is actual dynamic and static energy. The catch here is that we use the energy
metric from an Intel processor, then manually map each simulator stat with
each energy value, and then apply the same formulas that McPAT. With this
approach, the numbers obtained seem to be more realistic than the raw McPAT.
However, while this approach is enough to show some energy savings, energy
should still be normalized as the raw numbers do not represent real energy
consumption.
Each proposal requires its own metric numbers to show its improvement in
the different fields it targets. We summarize the rest of them:
* A scalability/speedup measure compared to 1 core to see how much im-
provement is obtained by increasing the number of cores.
* An Intel Top-Down view to show the reason for the stalls in the pipeline.
* A synchronization time overhead breakdown.
* The number of aborts per committed transaction.
* A breakdown based on the type of aborts in transactions.
A breakdown based on the type of commit in transactions.

46

7. Splash-4

7.1 Introduction

Traditional benchmarks used in computer architecture research tend to be out-
dated and not being updated as the hardware evolves. Splash-2, while still
in use, its code goes back to the early 90s, the computation and the hardware
have drastically changed since then. While an updated version (Splash-3) ex-
ists, it still does not exploit newer hardware capabilities introduced in the last
decades.

The first step towards the objective of this thesis is the single-address atomic
instructions and their integration into the current benchmarks. We need to un-
derstand and check if they are truly better performant and why they are not
being used.

In Section 7.2 we introduce the main issue on these old benchmark suites.
Then, in Section 7.3 we explore deeper by proposing changes to the current
synchronization methods exploiting single-address atomic instructions. Lastly,
in Section 7.4 we present the results obtained both in real hardware and in the
simulator infrastructure.

7.2 Synchronization Issues

Splash-3 represents a solid step towards adhering to the C standard, while also
fixing data races and several performance issues, but it is not enough to keep
the benchmarks relevant. In Splash-3, big critical sections are protected with
one mutex, they are coarse grain sections. While coarse grain critical sections
are not an issue by themselves, when they are contended, they introduce a
noticeable overhead due to threads waiting for mutexes to be freed, even when
there are no data conflicts. This issue is partially already mitigated by using
multiple locks per critical section in some cases.

Current processors are so blazing fast that the execution time between barri-
ers is negligible. As the Splash benchmark suite is developed with an intensive
use of barriers, most of the time is spent waiting for other threads to reach the
barrier.

7.3 Efficient synchronization

Our first approach to the problem is to do a characterization of the applications.
The analysis is done using a binary instrumentation tool implemented using In-

47

BT Y N

tel PIN [36]. The tool was able to accurately detect the synchronization points
and report information like the number of times executed (Table 7.1).

To better understand the dependencies between critical sections, the inter-
action of the threads, and the data movement, we developed the concept of
barrier groups. A barrier group is a region of code and all the critical sections
and synchronization points inside the region. With this concept, we can eval-
uate the dependencies and the requirements of atomicity per synchronization
point.

Critical Sections

Application Barriers Mutex Cl1 CAExch

St Dyn | St Dyn St Dyn St Dyn

Splash-3

Barnes 6 19 | 10 2140090 O 0 0 0
Cholesky 4 6 8 95182 0 0 0 0
Fft 7 9 1 64 0 0 0 0
Fmm 13 36 | 38 488126 O 0 0 0
Lu 5 69 1 64 0 0 0 0
Lu-NonContiguous 5 69 1 64 0 0 0 0
Ocean 20 902 4 13312 0 0 0 0
Ocean-NonContiguous | 19 872 4 13312 0 0 0 0
Radiosity 5 12 | 48 3861123 0 0 0 0
Radix 7 17 1 64 0 0 0 0
Raytrace 3 3 8 355184 O 0 0 0
Volrend 15 146 | 12 311164 0 0 0 0
Water-Nsquared 9 22 8 68672 0 0 0 0
Water-Spatial 9 22 6 1217 0 0 0 0

Table 7.1. Splash-3 Synchronization: 64 cores, default entries, each execution may
vary the numbers a bit, numbers obtained with our pin tool. St(atic) is the number of
instances present in the code, while Dyn(amic) is the number of instances executed in
runtime.

During the characterization, we noticed that the main cause of stalling the
threads is waiting on barriers. Stalling on barriers can be caused by thread
unbalance. However, in most of the applications, each thread is doing the
same work, so it should not be that predominant. But default pthread barriers
can put threads to sleep, and the wakeup time for each thread can be drastically
different, generating an unbalanced execution.

local sense = !local sense;
if (atomic fetch sub(&(count), 1) == 1) {
count = threads;
STORE (sense, local sense);
} else {
do {} while (LOAD(sense) != local sense);

}

Listing 7.1. Sense-reversing barrier

48

© o U N U A W N —

o - NV S SO VR R

For this reason, we propose changing the current barrier implementation
with the centralized sense-reversing barrier (Figure 7.1). By using atomic in-
structions and a spin-loop that traps each thread, the centralized sense-reversing
barrier is able to wake up the threads quicker, it is optimized for short waits.

Replacing a critical section with an atomic instruction (or an atomic con-
struct) is not a trivial task. All the sections that interact with the data of the re-
placed section, directly or indirectly, must also be replaced, as there is no atom-
icity protection guarantee between sections protected with different method-
ologies.

Listing 7.2. taskman.c.in 134

Original
LOCK (global->pbar lock);
global->pbar count--;
UNLOCK (global->pbar lock);

/)

Pre-Computer memory location
unsigned* count = &(global->pbar count);
LOCK (global->pbar lock);

*count = *count - 1;

UNLOCK (global->pbar lock);

// LockFree

FETCH AND SUB(global->pbar count, 1);

Some critical sections have direct analogous C11 atomics (Listing 7.2). There-
fore, if the data is not used in other critical sections in the same barrier group, or
the dependent ones can be also replaced with C11 atomics, the critical section
can be replaced with its analogous C11 atomic. In the Listing 7.2 example, the
critical section performs a subtraction on one memory location, that can be cal-
culated in advance. This operation is known as atomic fetch and sub,
but for portability, we have created a macro that hides all these operations, so
they can be replaced with alternatives in the case of not having the required
operation in the target platform.

Listing 7.3. multi.c.in 90

// Original

LOCK (locks->error lock)

if (local err > multi->err multi) {
multi->err multi = local err;

}
UNLOCK (locks->error lock)

// LockFree
double expected = LOAD (multi->err multi);
do {
if (local err <= expected) break;
} while (!CAExch (multi->err multi, expected, local err));

49

© 0 U N U A W N —

A different scenario is those critical sections that only read or modify a
shared location, but they do not have an analogous C11 atomic, even if the
atomic instruction exists on some platforms. Listing 7.3 shows this scenario,
in Ocean, that in some architectures it can be replaced with an atomic min,
however, this atomic min needs to be a double floating point atomic opera-
tion. No primitive implements this behavior, so it must be emulated using a
Compare-And-Swap or a Compare-Exchange construct. This construct, also
known as the While&CAS construct, iterates in a loop all the operations that
need to be done atomically, and stores the data in the memory only if the data
already present at the start of the iteration has not changed. This approach suf-
fers from the ABA problem but considering all the possible outcomes of any
interception, mainly because of the nature of the ‘min’ operation, this problem
does not affect the correctness of the execution.

Listing 7.4. interf.c.in 156 & interf.c.in 167 & interf.c.in 179

/ Original

ALOCK (gl->MolLock, mol % MAXLCKS) ;

for (dir = XDIR; dir <= ZDIR; dir++) {
temp p = VAR[mol].F[DEST] [dir];
temp p[H1] += PFORCES[ProcID] [mol] [dir] [H1];
temp p[O] += PFORCES[ProcID] [mol] [dir] [O];
temp p[H2] += PFORCES[ProcID] [mol] [dir] [H2];

}

AULOCK (gl->MolLock, mol % MAXLCKS) ;

/ LockFree
for (dir = XDIR; dir <= ZDIR; dir++) {

FETCH_AND_ADD_DOUBLE(&(VAR[mOl].F[DEST][dir][Hl]), PFORCES [
ProcID] [mol] [dir] [H1]);

FETCH AND ADD DOUBLE (& (VAR[mol] .F[DEST] [dir] [0]), PFORCES[«
ProcID] [mol] [dir] [O]);

FETCH_AND ADD DOUBLE (& (VAR[mol] .F[DEST] [dir] [H2]), PFORCES [+
ProcID] [mol] [dir] [H2]);

Some critical sections are grouped together without any apparent reason,
besides simplicity or reducing the cost of locking and unlocking. That is, the
data is not cross-referenced in any other critical section. This is the case of
Listing 7.4. In this section, after an incredibly careful and intense study, we
have determined that each iteration of the loop is independent (partially be-
cause of the used operation ’addition’). But even more, in the barrier group
that covers this (and others) critical section, there is no cross-use of the differ-
ent data. After a thorough test, we split the fig section with a loop into a loop
of 3 different lock-free constructs that are independent.

50

7.4 Results

After all the proposed changes, we run the characterization again to see the
evolution of the benchmarks (Table 7.2). There is no change in the number
of barriers, as we have changed only the implementation, but not the amount.
However, the critical sections are in a completely different situation, as at least
1 critical section has been replaced in all benchmarks, the critical section that
sets the thread ids.

Critical Sections

Application Barriers Mutex Cl1 CAExch

St Dyn | St Dyn St Dyn St Dyn

Splash-4

Barnes 6 19 9 2140056 1 64 0 0
Cholesky 4 6 6 68979 1 64 1 26238
Fft 7 9 0 0 1 64 0 0
Fmm 13 36 | 26 442838 1 64 1 5
Lu 5 69 0 0 1 64 0 0
Lu-NonContiguous 5 69 0 0 1 64 0 0
Ocean 20 902 0 0 1 64 3 13248
Ocean-NonContiguous | 19 872 0 0 1 64 3 13248
Radiosity 5 12 | 36 3478298 3 50497 3 6394618
Radix 7 17 0 0 1 64 0 0
Raytrace 3 3 2 252498 5 92455 1 8816
Volrend 15 146 1 1536 8 245519 0 0
Water-Nsquared 9 22 0 0 1 64 15 608384
Water-Spatial 9 22 0 0 1 64 6 1280

Table 7.2. Splash-4 Synchronization: 64 cores, default entries, each execution may
vary the numbers a bit, numbers obtained with our pin tool. St(atic) is the number of
instances present in the code, while Dyn(amic) is the number of instances executed in
runtime.

In general, Figure 7.1 shows the execution time reduction from the proposed
changes when executed in a real machine. The main benefit comes from chang-
ing the implementation of the barriers, showing a reduction of ~40%. The next
improvement is the replacement of many critical sections with their lock-free
alternatives, introducing a ~11% improvement. When both techniques are ap-
plied together, the total reduction goes to ~52%.

With the proposed changes we run a scalability study on the same machine
to better evaluate how the changes affect the performance when running with
different numbers of cores with respect to their 1-core serial execution. In
Figure 7.2 we clearly see how some applications change drastically. Ocean-
Cont and Ocean-NonContiguous increase the scalability from 4 to 32 cores.
But also, raytrace exhibits linear scalability compared with the original one
that stopped at 4 cores. Most of the applications see an increase in scalability,

51

'
!
I
I
|
|
|
|
|
I
1

\N?»\a‘ s ™

Norm. Execution Time
[oNeoloNololeoNoNoNe)
OFNWRITO 0O

e Tt oo et wocgtew‘we°*"“®w g oo

‘ a8 Splash-3 O Barrier Atomics & Splash-4 ‘

Figure 7.1. Execution time when upgrading Splash-3 barriers, atomics and both -
Splash-4- (64-threads on AMD Epyc 7702P)

ot
2 o3
E 2
B
< 2°
=
S
v m M
20 | L1 | |
e RS w“ o N .
2 C“O\ A L0 L7 ocﬁ«?’“
94
2 53
E 2
=
] 22
p—
S
v 2
20 L [L1
—ONtT oAl —AToOAlT —aIstooalst —‘NVOO\D('\IV —'NVOO\ONV —'NVW\ONV —'NVOO\DNW
—n\O —en\o —en\O —eN\o
NS Loy S® e o $% 5?
o™ Y&é“ﬁ * PO N R RS

‘ —6— Splash-3 —=— Splash-4 ‘

Figure 7.2. Splash-3 vs Splash-4 Scalability on AMD Epyc 7702P

52

with the exception of Cholesky, FFT, and Radiosity which seem to be stuck in
their original performance without any significant regression.

25
> 2t
=
= 23
O
=
o ol
9]
20
— ot oo\o Al '—‘Nﬁ'w@(‘\lv — et oo\o ol —OTOOAT —~aitoooalst —‘NVDO\ONV — ot oo\o Al
—eN\o —en\o —en\o —en\o —en\o
e® S} A N\ o o o
oo™ C‘oo\e‘»' ¥ oW R ! W Bl Oce?& O
25
2 o
=
fr=| 3
o 2
< 2
= 2
2 5
wnn 2
20
0 ‘#
Oc%« o o é\os\ﬂ ‘,&é\ i‘@ \]0\@(\ \ﬂa\z‘$ \N""e‘ ‘5

’ —6— Splash-3 —«— Splash-4 ‘

Figure 7.3. Splash-3 vs Splash-4 Scalability in simulated Intel Ice Lake (gem5-20)

Later, we decide to run the same comparison in the simulator, to see how
the scalability changes in this context. In Figure 7.3, we observe only some
small improvements in both versions of LU and Ocean, but also raytrace and
volrend, without any perceptible improvement in others. This behavior may
be driven by inaccuracy in the simulator making the applications behave better
than they really should.

53

8. Hardware Multi-Address Atomics

8.1 Introduction

Atomic operations are the most efficient way of updating a memory location
in isolation from the rest of the system. However, most of the platforms, are
limited to a single memory location, restricting their usage to implement other
more complex synchronization primitives.

After understanding the limits of single-address atomic instructions, and
without any deadlock-free high-performance alternative, in our second step
towards non-speculative advancements, we develop a new set of atomic in-
structions that can operate on multiple addresses at the same time.

In Section 8.2 we propose a deadlock-free locking order that considers the
hardware capabilities of the system. Then, in Section 8.3 we present an exam-
ple of how to use the locking order with atomic instructions to develop a set of
multi-address atomic instructions. Lastly, in Section 8.4 we compare our new
atomic instructions against mutex locks, lock-free, and intel TSX versions of
the applications.

8.2 Locking order

Dijkstra address locking order can be expressed as an iterative process using
Equation 8.1. ‘L’ is a set of locked addresses and a new address ‘u’ needs
to be locked. If the new address is bigger than any of the addresses in the
already locked set, then the new address can be locked safely. While Dijkstra’s
methodology seems to work, it does not take into account any other restriction
from the system.

{L}+u={L+u}<=Vie{l}:l<u (8.1)

To illustrate the issue, we are going to go through different scenarios adding
more details on each step. We start with 4 different addresses 66, 15, 4, and
192. In address order, locking is done in the following sequence: 4, 15, 66
and 192. Now, let us add a restriction, locked addresses must fit in a structure.
In this example, the structure has 4 slots, and they are directly mapped from
the address, that is, a subset of the bits determines which slot it takes.

In Figure 8.1, we see that address 192 conflicts with address 4 in the struc-
ture. Despite having space in the structure, the way addresses are mapped into

54

| 4 4 4 4 192

66 66
15 15 15

Figure 8.1. Directly mapped structure causing a conflict that prevents locking all ad-
dresses despite having enough space.

it generates a conflict that prevents the set of addresses from being locked to-
gether. This structure mimics having a private cache in the memory hierarchy
that needs to contain all the memory addresses to maintain the atomicity of
the full set of addresses by preventing other cores from reading or writing into
them.

This “mapping” is what we define as 1exicographical order (lex
order). In Ros and Kaxiras’ research [43], they defined 1ex order a bit
differently, but this definition is more powerful when adding more restrictions.
The main point of difference is that the original definition was intended to max-
imize the number of addresses, but with the possibility stop adding addresses
into the protected set at any moment.

However, when dealing with locks defined by the program, they cannot be
split into different groups, all of them need to be protected as a group.

Two different points must be considered when ordering the locks: 1) private
structures and 2) shared structures. In private structures, the main issue is to
guarantee that there is enough space to have all the addresses available at the
same time. In most architectures, private caches have at least 4-ways associa-
tivity. Later, we define why 4 is enough, but for now, we can guarantee that
if the number of addresses is 4 or less, the addresses can be locked, even if in
the worst case, they all end up in the same cache set. Therefore, we limit the
number of simultaneous addresses to four.

If for some reason, any shared structure (inclusive-LLC, directory, ...) has
less associativity, this number should be reduced to match it. However, it is
safe to assume that in any modern high-performance system, this is not the
case.

This restriction is not enough, shared structures resources must be required
by multiple cores to perform an atomic operation, therefore locking the system.

Defining the 1ex order to match the scenario in Figure 8.2, the risk of
deadlock can be detected before encountering it. In this configuration, ad-
dressees 5,53, 81, 9, 57 and 113 have the same 1ex order (this scenario
isknownasa lex conflict). Inthe case depicted, both cores want to lock
two more addresses to complete their atomic group, but neither of them can
allocate space for the missing conflicting entry. This definition of the 1ex

55

ore Core 1
ock Queue| [Lock Queue ‘ Shared Inclusive Structure \

o 106 259
o
S 81 113
k= 53 57
S 5 9
L

©)
©)

81 —| le——113

Figure 8.2. Shared structure conflict because multiple cores lock addresses in the same
set of a shared inclusive structure.

order is similar to the address order but uses the mapped set in the shared
cache instead.

To prevent this deadlock, multiple solutions are available, however, for its
simplicity, and because of how improbable this situationis,on lex conflicts,
a set lock is requested for the shared structure. The set lock prevents other
cores from using the set for entries with lex conflicts. This effectively
prevents deadlocks due to the shared cache set but allows non-conflicting en-
tries to concurrently allocate entries in the set, as they are guaranteed to be
completed at some point.

Another scenario can arise as a deadlock due to the specified rules. When
removing an entry from a structure in the cache hierarchy, to allow the quick
allocation of the new entry, evicted entries are moved to a victim cache, where
they wait until they can be flushed to the lower levels (if needed) or wait for
confirmation from other caches. In Figure 8.3, core 1 is performing normal
reads and writes into the cache, but because core 0 is locking entries, they can
fill the victim cache, not allowing more entries to get replaced, and therefore
not allowing any new replacement to happen in the shared structure. Upon

56

Core 0 Core 1 Shared Inclusive

ock Queue| [Load-Store Structure ﬂ Victims' Cache b

3 106 259 q (‘
g 82 114
53 57
S 4 8

—
O O T ¥
53 57 53
82

C T -)[d

®

114

[+ [e |

O

!
L&)

<106

e) LT)

Figure 8.3. Deadlock scenario because the size limit of the MSHRs, caused by a core

that is not locking addresses

57

S

o -V S SO VR R

reaching this point, non-locking accesses are done non-cacheable, and locking
accesses must wait until an entry is freed by doing in-situ replacements.

sizeof{L + u} < min(assoc)
Vi e {L}: LexOrder(u) > LexOrder(l)*
*If an entry has the same lex order, additional steps are required.
(8.2)
Following these rules, summarized in Equation 8.2), multiple addresses can
be locked without any risk of deadlock.

{L}+u={L+u} =

8.3 Multi-Address atomic instructions

Atomic operations, and our definition of 1ex order, can be combined to
create non-speculative multi-address atomics. We developed two kinds of
new instructions: 1) Atomic fetch-and instructions and 2) Multi-Compare And
Swap.

To prevent extra buffers or reading extra data from memory, and follow-
ing x86 ISA, all the data for the CAS operation must be in registers. A CAS
operation requires 3 values: address, old value, and new value. Therefore, an
n-CAS operation requires 3 X n registers to be performed. On x86, the number
of registers available to the programmer is 16, therefore a maximum of 5-CAS
can be implemented.

Listing 8.1. Two-addresses fetch-and-add atomic operation in gem5-like micro-code

mfence
’ Load-Locking block
load lock tl, rax
load lock.exec t2, rcx
’ Computing block
add tl, tl, reg
add t2, t2, regm
'/ Storing-Unlocking block
store unlock tl, rax
store unlock t2, rcx
mfence

8.4 Results

With this new instruction set for multi-address atomics, we modified several
data structure benchmarks, alongside some benchmarks from Splash and STAMP
to see the effectiveness of the proposed solution. We show 4 different versions

58

©

mutex_lock(Q)
b++
G++
mutex_unlock(Q)

u_lockC&b) u_lockC&a)
u_lockC&a) u_lockC&b)

b++ b++

G++ G++
u_unlockC&a) u_unlockC&b)

W u_unlockC&b) u_unlockC&a)

Figure 8.4. a) Critical section with mutex locks; b) MAD atomic instruction; ¢) micro-
ops generated by the MAD atomic; d) run-time order of instructions.

of the applications: Lock-based, Lock-Free, Intel TSX-like and MAD Atom-
ics. In the case of some applications (Dequeue, MWODbject, Water-NS, Water-
SP, Intruder), there is no lock-free alternative, so this bar is omitted in those
applications.

Figure 8.5 shows the execution time normalized to the lock-based version
of the application with the same core count. Stack is the worst-case scenario
for the lock-free versions. Stack requires that all the operations performed re-
quire modifying the same memory location (the top of the stack), forcing an
unbounded set of retries. HashMap shows a lot of overhead with the lock-
free implementation, but from 8 cores, this overhead gets reduced. This is-
sue is caused by the increase in complexity of the lock-free implementation
of HashMap with 1-address atomics. Due to the unbounded limit of the TSX
implementation, even after limiting the number of retries to 6, most of the
applications tend to perform much worse than the alternatives. This behav-
ior is exhibited due to the high contention these applications have. In general
MAD atomics shows a general improvement over any other methodology, but
MWObject. MWODbject is the benchmark with the maximum contention pos-
sible, a small critical section targeting the exact same addresses with a simple
and quick operation. In this unrealistic scenario, the data is forwarded to an-
other core instead of using the locality and executing multiple times the critical
section before relinquishing the cacheline. As a summary, MAD atomics im-
proves the execution time by about 80% over mutex locks, while reducing 60%
over Intel TSX and slightly improving over lock-free implementations but be-
ing much simpler to program and improving significantly over HashMap and
Stack.

As the hardware and modifications introduced are small, we chose to show
the number of committed instructions (Figure 8.6) as a measure of energy.
In this scenario, the buffer required is small, the logic is simple enough that
it should not incur significant power costs. In general, committing fewer in-
structions in a non-speculative approach means sending fewer requests, and
flushing the pipeline less times, therefore the energy consumed should be re-
duced in a similar proportion. As expected, the graphs about time and com-

59

Norm. Execution Time

— Ol <t 0o Al — O <t 0ol — <t oo \oalt — <t ool — o<t 0o al st — <t 0o Al
— N o — N O — N O — N \o
BSTree Deque HashMap MWObject Queue Stack
(]
s o
£ 3 39 o 8% < 303
"F': ol - o — - — ‘C\]v—i,_;
= 1.2 1
9 1.0 |
= |
3 0.8 |
I
2 0.6 I
m 0.4 |
I
o2 [k LA, LN
0.0 thiALALAL AL
] I
Z — O < © © al <t — O < © O al <t — O < © O al <t — O <t 0 O ol < | — O <t 0 O ol <
— N O — N O — N O — N O — N O
Bitcoin Water-NS Water-SP Intruder ! Geomean

8 Lock-Free® TSX® MAD Atomics ‘

Figure 8.5. Execution time (1 to 64 cores). Data is normalized to the lock version
with the same core count. Deque, MWODbject, Bitcoin, Water-NS, and Water-SP do
not have lock-free version. Intruder does not have a lock or lock-free version, it is

normalized against TSX.

60

Norm. Committed Insts.

— o<t 0o Al — Ol <t 0o Al — <t oo \oal <t — <t ool — <t 0ot — o<t 0ol
—n O — N O — N O — N o — N o —n o
BSTree Deque HashMap MWObject Queue Stack
@ 2
7 g =38R
E — o=
"8 1.2 1
I
£ 10 |
=
E 0.8 I
l
g 06 |
8 0.4 || I
I
- o2 (|1 0] e
é 0.0 |||I..| dl o AT Ak I T 1L bk
|
£ — &N < © O Ao — & < © O o — & <t 0 o ol — & <t 0 \© ol | — & <t 0 o ol
— N O — N O — N O — N O — N O
Bitcoin Water-NS ‘Water-SP Intruder ! Geomean

8 Lock-Free® TSX® MAD Atomics ‘

Figure 8.6. Normalized committed instructions (1 to 64 cores). Data is normalized
against the lock version with the same core count. Deque, MWODbject, Bitcoin, Water-
NS, and Water-SP do not have a lock-free version. Intruder does not have a lock or
lock-free version, it is normalized against TSX.

61

mitted instructions are quite similar, but with some exceptions. The overheads
introduced in Water-SP and MWObject are at the cost of reducing the amount
of committed instructions. In general, the trend is that any methodology over
mutex lock seems to work better, also in energy (with the exception of Stack),
by a significant margin.

62

9. cleAR: Bounding TM to a single retry

9.1 Introduction

Hardware transactional memory delegates all the synchronization and conflict
resolution to the hardware, in the hope that it will protect the memory in the best
way possible. While it is trivial to use by developers, as they only must mark
the limits of the critical section, the performance was not as good as expected.
The main factor that reduces the performance of transactional memory is the
number of retries required to complete a critical section under contention.

This is the third, and last, step in this thesis, we propose the runtime conver-
sion of transactions into their non-speculative version. With this approach, we
open the way to enable the non-speculative execution of coarse grain critical
sections.

In Section 9.2 we show our observations with high-contended transactions.
Then, in Section 9.3 we present a methodology that exploits multi-address
locking to bound the number of retries of transactions. Lastly, in Section 9.4
we compare the proposal with both Intel TSX and Power-TM.

9.2 High-contended immutable transactions

High-contented transactions are prone to be aborted multiple times, limiting
the concurrency of the transaction. The most trivial examples of these kinds of
transactions are the ones that emulate an RMW operation. All the threads will
try to read and write in the same memory location. These are an example of
immutable transactions, as once they are started, every retry will perform the
same memory accesses.

Ratio of re-trying ARs
COO0O0O0OO0OOOH+
OFNWERUION0OO

Figure 9.1. ARs that do not change their accessed cachelines on the first retry

63

Listing 9.1. Inmutable AR. From arrayswap.

register uint64 t* a = arrayl[posal;
register uinté4 t* b array[posb];
atomic {

uint64 t elem a = *a;

uint64 t elem b = *b;

*a = elem b;

*b = elem a;

In general, a relevant amount (over 60% in our evaluation Figure 9.1) of
transactions tend to operate on the same memory locations when retrying.
These likely-immutable transactions can change memory locations after be-
ing interrupted by another core, but this is not the common case. In Table 9.1,
we show a breakdown of the critical sections in code by their mutability status.
Applications like arrayswap and mwobject are composed solely of immutable
critical sections, and this is because of the algorithm used. For example, ar-
rayswap swaps two elements predefined (Listing 9.1), therefore the critical
section only needs to permute those two locations, and because the elements
are predefined, the locations also are. In STAMP, around half of the critical
sections are likely immutable, that is, most of the time the memory locations
do not change, but sometimes they do.

In most cases, mutable critical sections require having any kind of memory
indirection in the code, that is, the memory location to modify is pointed by an-
other memory location. The simplest example is a sorted list (Listing 9.2). The
next node, the address to load, and possibly modify, is accessed by a pointer
indirection from the current node. However, indirections do not directly indi-
cate that the code is mutable, which is why we include likely immutable critical
sections. In Listing 9.3, the value read and written (.bitcoins) is obtained
from an indirection of a global table users. In this case, the addresses will
not change between re-executions, unless the pointer to users changes. Most
of the time, this address will be a constant, so if the compiler detects it, it could
move the indirection load outside the critical section, but most of the time, it
will go safely, and keep the indirection in the critical section, creating an im-
mutable critical section with an indirection inside.

9.3 Bounding Retries

Our observation leads to: if the memory set is not changed, cache locking
can be used to guarantee the completion of the transaction. However, as the
addresses are not known in advance, in contrast to atomic operations, a first
run is made (discovery), calculating all the addresses and gathering as much

64

Listing 9.2. Mutable AR. From sorted-list.

atomic {

auto curr = head->next;
(curr != tail) {
if (curr->data == val)
= curr->next;

while

curr

n val++;

Listing 9.3. Conditionally Inmutable AR with indirections

. From bitcoin.

User *users;

atomic {

users[from] .bitcoins -=
users[to] .bitcoins += amount;

}

amount;

Benchmark

of ARs

Immutable

Likely
immutable

Mutable

arrayswap
bitcoin
bst

deque
hashmap
mwobject
queue
stack
sorted-list

W NN = W W= DN

(=]

bayes
genome
intruder
kmeans-h
kmeans-1
labyrinth
ssca2
vacation-h
vacation-1
yada

—_
n

AN W W W W W W WwWwn

— OO NO R, OO, OO~ OO OO

O = = —m ON NN WNO =P, OO —=O —

NN OWODO— WO —OW—WwWwoo

Table 9.1.

Characterization of ARs

65

gemmesssssss=smeeanc

Can
hardware lock the
address set?

Core
Structures
Overflow?

v Vi
Fallback Speculative
Retry

Figure 9.2. Decision tree of the execution modes of cleAR

Is the
indirec

5 non-Speculative
Cache-Locking /

re any N
tions?
Yes

B v,
Speculative
Cache-Locking /

information as possible about the critical section. In this first execution, in the
case of aborting by memory access of another core, the abort is elided, and
the section continues to gather as much information as possible. Upon finding
the end of the transaction, the information gathered is used to determine if the
section is immutable, likely immutable, or mutable, and therefore, selecting
the correct re-execution method (Figure 9.2).

The available execution methods are:

Discovery: First execution of a critical section, eliding the abort if it
is caused by memory access. It gathers information about the critical
section to select the right re-execution method.

non-Speculative Cache-Locking (nSCL): The critical section was de-
tected as immutable; therefore, all addresses are locked in the cache, and
the critical section is re-executed without running any conflict detection
or checkpoint.

Speculative Cache-Locking (SCL): The critical section is likely im-
mutable, but there is no guarantee. In this case, cache locking is used
on some memory locations (written and conflicting addresses) and the
critical section re-executes using the conflict detection and checkpoint.
Speculative Retry: The critical section is likely mutable; therefore, no
locking is performed, and the section re-executes using the speculation
mechanism already mentioned.

Fallback: The section reached a limit where speculation is nearly guar-
anteed to never succeed, in this case, a fallback global lock is taken, and
the section is run without any speculation protection mechanism.

This idea is orthogonal to the speculation method used to execute the critical
section, either SLE or TM. The fallback and speculative retry re-executions are
provided by the speculative method used, while nSCL, SCL, and discovery are
added by cleAR.

66

9.4 Results

We implemented 4 different versions to evaluate cleAR. The baseline (B) is
running an Intel TSX-like implementation. Then, as an up-to-date implemen-
tation of HTM, we include PowerTM (P). Finally, we added cleAR to both
implementations TSX-like + cleAR (C) and PowerTM + cleAR (W).

1.2

1.0 S
0.8
0.6
0.4

0.0
BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW

>
\\0(\ ﬂ@
<

Normalized time

>
‘oﬁ %e“o <

; \&‘3 S
e o Ry @ff"

1.21

1.2

T
1.0 :
0.8 !
0.6 l
0.4 }
Il i A AEA M

0.0
BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW,;BPCW

Normalized time

N\ . N >
o o &o\ 5\\"0 5c\° O?a B’ 625\\ &
W (@ﬂ $Q(\

‘b&?ﬂ

’ [Normal Time[] Time Running Aborted in Discovery ‘

Figure 9.3. Normalized execution time

Our first result is to observe the execution time, alongside the overhead time
due to executing during aborted discovery. As can be seen in Figure 9.3, most
of the STAMP benchmarks do not exhibit much change. The main reason is
that the critical sections in STAMP are quite large, and their address sets are
quite big. Two scenarios happen here: 1) the threads do not conflict at all,
which happens for example in ssca2, genome, vacation, ... and 2) the threads
conflict so much (or they have too many addresses) and the transaction reaches
the fallback path, this is happening to bayes, labyrithn, yada, ... However, we
are able to obtain significant improvement on bayes, intruder, and kmeans-h,
alongside power-tm which also gets some benefit here. In the data-structure
benchmarks, with the exception of hashmap, a huge benefit is obtained in most
of the benchmarks, and due to its high contention, this is the expected result.

Execution time by itself is not enough to understand how cleAR really im-
proves the execution of the benchmarks. In Figure 9.4, we show the number of
aborts per committed transaction. First, please note that even if the number of
retries is limited to between 1 and 10, due to the heuristics used in HTM, some
kinds of aborts do not count to the retry counter (i.e., being aborted because

67

[l A <t 00 0
oA = 2 G e
bR =N @ =} <o
— 00 ™M — 0 o~ —
é 3
E 7
o 6
O 5
5 4
& 3
w2
£ 2
o 1
R}
< o
BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW
& 5 S s & & Y & »
o o & o & S < S o i
v « «* o W o o
(=2} o < 00 b~
I oo S [X=)
+— — 00 o~ — O
.é 8 I
|
= |
o 6 1
(@] 5 1
5 4 i
(ST 1
2} I
£ 2
g |
< o
BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW BPCW
R © o N o & & & S &
¥ «° v o S ¥ ¥ & N ST
%ﬁd ¥ ¥ \\%%Q o ° ; so‘\z +

Figure 9.4. Aborts per Committed Transaction

another transaction started in fallback mode). The big picture here can be seen
at the average, where the number of retries is reduced from 8 or 7 (baseline and
Power-TM respectively) to around 2 (cleAR with and without Power-TM). The
rest of the aborts are prevented by executing the highly contended sections non-
speculatively, but also by reducing the possibility of conflicts using the locking
mechanism in conjunction with the speculative approach (sCL mode).

68

10. Conclusion and Future Lines

10.1 Conclusion

Non-speculative and concurrent execution of critical sections is a problem far
from being solved. This thesis explores the complex world of thread synchro-
nization and atomicity and introduces some improvements over existing solu-
tions.

The very first issue is the outdated state of the benchmarks used in research
(Paper I). Most of the suites were crafted over 20 years ago. In Splash-4, we
try to show why this issue matters and why the community needs to continue
updating benchmarks to prevent misrepresenting the underlying hardware as
much as possible. We have also shown how we do this update, so other re-
search can follow a similar method to update other applications. However,
this requires a very deep understanding of each application, the data flow, and
the locking mechanisms used. It is a time-consuming task.

While atomic instructions are extremely useful, efficient, and high-performant,
they are rarely used outside small programs or to create other protection prim-
itives (like mutexes). In our Paper II, we have developed a methodology that
allows non-speculative, efficient, and deadlock-free, to lock multiple cache-
lines at the same time to perform a multiple address atomic operation. These
new atomic operations are not only simpler to use because they protect more
than one address, but also, they are much more flexible.

Still, atomic operations are hard to introduce in big programs, even if mul-
tiple addresses atomic simplify the problem, therefore, they will be relegated
to end up in libraries and data structures. Developers tend to still use mutexes,
or order coarse-grain locking mechanisms because they do not need to worry
about data dependency and deadlocks. One of the proposed coarse-grain pro-
tection methods is Transactional Memory, it introduces the concept of trans-
actions, where the developers do not even need to worry about which lock to
use on each critical section, the transactional memory system will manage any
conflict. Despite how good it sounds, the performance in hardware implemen-
tations is not as good as correctly using previous solutions. In our Paper III,
we introduce new hardware that, using the locking properties of multi-address
atomic operations, can determine the data used by the section and perform a
non-speculative re-execution of the section to guarantee its success in just one
retry.

Overall, this thesis allows the non-speculative execution of critical sections
by incrementally adding more complexity to the critical sections while making
it easier for programmers to protect the code regions they require.

69

In this thesis, we propose our own approach to continue improving the syn-
chronization mechanism between threads, with a big focus on efficiency and
deadlock-freeness. I hope this work we have done in the last 5 years serves
as an inspiration point for more researchers in the field to continue developing
their ideas and expanding their knowledge with new insights in the years to
come.

10.2 Future Research Lines

In both MADs and cleAR works, the locking is assumed to be executed in
order, which may introduce a bottleneck in certain situations. We have in-
vestigated performing this locking out of order, and it is feasible if unordered
requests can relinquish the locking permissions upon another core request. At
first glance, it seems that it should work identically and not be able to deadlock,
but more research needs to be done to keep this guarantee.

Also, in certain situations, one lex order may not be enough, this hap-
pens with two or more shared structures that have enough capacity but with
different indexing policies (i.e., an inclusive LLC and a directory decoupled
from the LLC). In this case, it can be solved by having two 1lex orders,
in the example, one for the LLC and another for the directory. Then, first, it
is needed to guarantee the slots and permissions in one structure (ideally the
biggest one first), and when the space is reserved, then allocate the space in the
second one. However, this methodology may introduce a lot of complexity and
needs more research.

We think it would be interesting to explore is the combination of locking and
SIMD instructions. Adding locking SIMD loads, stores, gathers and scatters
may open the door to a new paradigm of SIMD critical sections that some
applications may exploit.

The Splash benchmark suite still has some issues, like a deadlock in FMM
since splash-2, and is missing a lot of optimizations that can boost the perfor-
mance. For example, FFT has 7 barriers in the code, but only 3-4 are required.

Also, we wanted to explore how the compiler could help with the conversion
of critical sections and transactions. The compiler could mark, even alter how
the addresses are accessed, and even perform some transformations that could
help to perform the non-speculative execution at runtime.

70

Bibliography

[1] McPAT 1.3. https://github.com/HewlettPackard/mcpat,
September 2015.

[2] S. Afshar, M. Behnam, R.J. Bril, and T. Nolte. Per processor spin-based
protocols for multiprocessor real-time systems. Leibniz Transactions on
Embedded Systems, 2017.

[3] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. GARNET: A
detailed on-chip network model inside a full-system simulator. In Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS), pages 33—42, April
20009.

[4] Alaa R. Alameldeen and David A. Wood. IPC considered harmful for
multiprocessor workloads. IEEE Micro, 26(4):8—17, July 2006.

[5] ARM. Arm synchronization primitives development article, 2022.

[6] Greg Barnes. A method for implementing lock-free shared-data structures. In
Proceedings of the fifth annual ACM symposium on Parallel algorithms and
architectures, pages 261-270, 1993.

[7] Naama Ben-David, Guy E Blelloch, and Yuanhao Wei. Lock-free locks
revisited. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 278-293, 2022.

[8] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: Characterization and architectural implications. In
17th Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT),
pages 72—-81, October 2008.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1-7, May 2011.

[11] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In
Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA °05, page 21-28, New York, USA, 2005.
Association for Computing Machinery.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[13] Dave Dice, Maurice Herlihy, and Alex Kogan. Improving parallelism in
hardware transactional memory. ACM Trans. Archit. Code Optim., 15(1), mar
2018.

[14] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. EDW-310,
E.W. Dijkstra Archive, Center for American History, University of Texas at
Austin.

71

[15] Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H. Flood, Victor
Luchangco, Paul A. Martin, Mark Moir, Nir Shavit, and Guy L. Steele. Dcas is
not a silver bullet for nonblocking algorithm design. In Proceedings of the
Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, page 216224, 2004.

[16] Steven Feldman, Pierre Laborde, and Damian Dechev. A practical wait-free
multi-word compare-and-swap operation. 2013.

[17] Steven Feldman, Pierre Laborde, and Damian Dechev. A wait-free multi-word
compare-and-swap operation. International Journal of Parallel Programming,
August 2014.

[18] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers.
https://www.agner.org/optimize/microarchitecture.pdf,
November 2022.

[19] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy,
Peter M. Chen, and Thomas F. Wenisch. Persistency for synchronization-free
regions. In 39th Conf. on Programming Language Design and Implementation
(PLDI), pages 46—61, June 2018.

[20] Michael Greenwald. Two-handed emulation: how to build non-blocking
implementations of complex data-structures using dcas. In Proceedings of the
Twenty-First Annual Symposium on Principles of Distributed Computing,
PODC °02, page 260-269, New York, NY, USA, 2002. Association for
Computing Machinery.

[21] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the 15th International Conference on Distributed Computing,
DISC 01, pages 300-314, Berlin, Heidelberg, 2001. Springer-Verlag.

[22] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In 20st Int’l Symp. on Computer
Architecture (ISCA), pages 289-300, May 1993.

[23] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[24] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of
multiprocessor programming. Morgan Kaufmann Publishers (imprint of
Elsevier), 2 edition, 2021.

[25] Herbert HI Hum and James R Goodman. Forward state for use in cache
coherency in a multiprocessor system, July 26 2005. US Patent 6,922,756.

[26] IBM Corporation. Power ISA Version 3.1, May 2020.

[27] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer's
Manual. Number 325462-072US. Intel, May 2020.

[28] ISO. ISO/IEC 9899:2011 Information technology — Programming languages
— C. International Organization for Standardization, Geneva, Switzerland,
December 2011.

[29] ISO. ISO/IEC 14882:2011 Information technology — Programming languages
— C++. International Organization for Standardization, Geneva, Switzerland,
February 2012.

[30] Nodari Kankava. Exploring the efficiency of multi-word compare-and-swap.
2020.

72

[31] Daniel Kondor. Bitcoin network dataset. Available (archived) at:
https://web.archive.org/web/20200502094144/https:
//senseable2015-6.mit.edu/bitcoin/ (accessed on 30 Nov. 2023).

[32] Shubham Lagwankar. A lock-free work-stealing deque.
https://github.com/ssbl/concurrent-deque.

[33] Nhat Minh L&, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli.
Correct and efficient work-stealing for weak memory models. ACM SIGPLAN
Notices, 48(8):69-80, 2013.

[34] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In 42nd Int’l Symp. on
Microarchitecture (MICRO), pages 469—480, December 2009.

[35] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad
Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce,
Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas
Derumigny, Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan
Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel
Gandhi, Dibakar Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito,
Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth,
Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso
Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Miick,
Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E.
Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Matthew D. Sinclair
Boris Shingarov, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton,
Nilay Vaish, Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn,
Christian Weis, David A. Wood, Hongil Yoon, and Eder F. Zulian. The gem5
simulator: Version 20.0+. arXiv preprint arXiv:2007.03152, 2020.

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI °05, page 190-200, New York,
NY, USA, 2005. Association for Computing Machinery.

[37] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. ACM
SIGOPS Operating Systems Review, 26(2):108, 1992.

[38] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.
STAMP: Stanford transactional applications for multi-processing. In Int’/ Symp.
on Workload Characterization (IISWC), pages 35-46, September 2008.

[39] CORPORATE Motorola, Inc. M68000 family programmer s reference manual.
Motorola Inc., 1991.

[40] Srishty Patel, Rajshekar Kalayappan, Ishani Mahajan, and Smruti R. Sarangi. A
hardware implementation of the mcas synchronization primitive. In 2077
Design, Automation, and Test in Europe (DATE), pages 918-921, March 2017.

73

[41] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In 34th Int’l Symp. on Microarchitecture
(MICRO), pages 294-305, December 2001.

[42] Ravi Rajwar and James R Goodman. Transactional lock-free execution of
lock-based programs. In /0th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), pages 517,
October 2002.

[43] Alberto Ros and Stefanos Kaxiras. Non-speculative store coalescing in total
store order. In 45¢th Int’l Symp. on Computer Architecture (ISCA), pages
221-234, June 2018.

[44] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
pages 101-111, April 2016.

[45] Marina Shimchenko, Rubén Titos-Gil, Ricardo Fernandez-Pascual, Manuel E.
Acacio, Stefanos Kaxiras, Alberto Ros, and Alexandra Jimborean. Analysing
software prefetching opportunities in hardware transactional memory. Journal
of Supercomputing (SUPE), 78(1):919-944, January 2022.

[46] Jaswinder P. Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:
Stanford parallel applications for shared-memory. ACM SIGARCH Computer
Architecture News, (1):5—44, March 1992,

[47] Standard Performance Evaluation Corporation. SPEC CPU2017, 2017.

[48] T. B. Strom and M. Schoeberl. Hardlock: A concurrent real-time multicore
locking unit. In 2018 IEEE 21st International Symposium on Real-Time
Distributed Computing (ISORC), pages 9-16, 2018.

[49] Michael E Thomadakis. The architecture of the nehalem processor and
nehalem-ep smp platforms. Resource, 3(2):30-32, 2011.

[50] John Turek, Dennis Shasha, and Sundeep Prakash. Locking without blocking:
making lock based concurrent data structure algorithms nonblocking. In
Proceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 212-222,1992.

[51] Andrew Waterman and Krste Asanovic. The risc-v instruction set manual,
volume i: Unprivileged isa document, version 20190608-baseratified. RISC-V
Foundation, Tech. Rep, 2019.

[52] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodological
considerations. In 22nd Int’l Symp. on Computer Architecture (ISCA), pages
24-36, June 1995.

[53] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. Parsec3.0: A
multicore benchmark suite with network stacks and splash-2x. SIGARCH
Comput. Archit. News, 44(5):1-16, February 2017.

74

Acta Universitatis Upsaliensis

Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 2520

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through

the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-552947

ACTA UNIVERSITATIS
UPSALIENSIS
2025

	Abstract
	Acknowledgement
	List of papers
	Contents
	List of Tables
	List of Figures
	List of Listings
	1 Abstract
	2 Sammanfattning
	3 Resumen
	4 Introduction
	4.1 Opportunities
	4.2 Contributions

	5 Background
	5.1 Cache coherence
	5.2 Parallel benchmark suites
	5.3 Synchronization primitives
	5.4 (Single-Address) atomic instructions
	5.5 Multi-address atomic instructions .
	5.6 Speculative execution of critical sections
	5.7 Non-speculative and concurrent execution

	6 Methodology
	6.1 Simulator
	6.2 Real Machine
	6.3 Benchmarks
	6.4 Methods
	6.5 Metrics

	7 Splash-4
	7.1 Introduction
	7.2 Synchronization Issues
	7.3 Efficient synchronization
	7.4 Results

	8 Hardware Multi-Address Atomics
	8.1 Introduction
	8.2 Locking order
	8.3 Multi-Address atomic instructions
	8.4 Results

	9 cleAR: Bounding TM to a single retry
	9.1 Introduction
	9.2 High-contended immutable transactions
	9.3 Bounding Retries
	9.4 Results

	10 Conclusion and Future Lines
	10.1 Conclusion
	10.2 Future Research Lines

	Bibliography

