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ABSTRACT

Abstract

We are in an era that is reaching the limit of the multi- and many-core performance. Since the start
of computing, the performance was always a limit to break, in the first place by scaling the frequency
of each CPU generation, then Moore’s Law forcing the increase of the transistors in an integrated
circuit.

Nowadays, many tasks are delegated to specific devices capable to execute those tasks faster
and more efficient than a traditional CPU, being the most known one the GPU. We have reached
an accelerator boom, with the usage of FPGAs as accelerators instead of only prototyping and the
creation of many ASICs for specific tasks, there are a vast of accelerators that can be used.

The problem of this accelerator boom is that to exploit the performance of each one, it is necessary
to use its own programming language, a DSL. Therefore, to use multiple devices, programmers are
forced to create multiple versions of the same source code for each device, increasing a lot the code
complexity.

Machine learning is one of the fields where new accelerators are developed each day because being
able to run more complex models in less time allows them to solve bigger problems.

To accomplish this big problem of multiple device programming, several programming models
are developed. Therefore, we want to know which programming models are available, which is the
main focus of each one, and their characteristics. The is not any complete classification of these high
performance programming models, only an interesting survey from 2013, but many of the models
classified are now deprecated.

We have developed a classification of 23 high performance models using 4 parameters, supported
platforms, type of programming model, the programming paradigm and the memory paradigm. These
models were selected from 50 reviewed models, but we discard discontinued models and the ones that
have been merged into other models.

From this classification, we have extracted 8 models that can be fit into a single source programming
model classification, it is only a sample of all models in the table that have this characteristic.

Then, we think that use one of these new models into a real application is interesting, therefore we
selected PHAST, and as a joint collaboration with its creators, we have been porting the Caffe deep
learning framework to PHAST.

In this work, we show the status of this ongoing project that we plan to finish and release freely.
Using the Caffe CPU only code, we aim to port it using the performance portability approach, it
means that one source code can be targeted to multiple devices. We have obtained to run two LeNet
based networks for MNIST and CIFAR fully in PHAST, and passing almost all Caffe tests despite the
unimplemented functionality.

We are not ready to give performance results, but our firsts tests give about 10x of performance
loss, but with a few changes we got 2x improvement, and this can be greatly improved.

We continue working in this project, explore the remainder programming models is essential to
complete our classification and finish the Caffe port extending it to other devices and getting better
performance.
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RESUMEN

Resumen

En el inicio de la computación, aumentar el rendimiento ha sido la meta a conseguir. En el inicio,
incrementar la frecuencia de la CPUs en cada generación era la clave. Adicionalmente incluyendo
más transistores, creando la conocida Ley de Moore, que indicaba que cada 2 años se doblaba la
cantidad de transistores en un circuito integrado. Aśı ha sido hasta principios del año 2000, donde los
procesadores estaban alcanzando el ĺımite de densidad energética. Con un cambio de paradigma, la
creación de los procesadores multinúcleo, conseguimos seguir incrementando el rendimiento.

Durante este periodo de crecimiento de la capacidad de cómputo, distintos modelos de inteligencia
artificial se iban creando, siendo las ANNs el algoritmo más conocido. Sin embargo, el uso de estos
algoritmos conlleva una gran cantidad de tiempo, por lo que a mayor potencia de cómputo disponible,
redes neuronales más complejas pueden ser desarrolladas, y de esta manera resolver problemas mayores.

A pesar de que aún seguimos incrementando el rendimiento de los procesadores multinúcleo, lle-
vamos usando aceleradores hardware para ciertas tareas desde hace varios años. En un principio, los
aceleradores más comunes, las GPUs, empezaron a ser usadas para cómputo de proposito general en
lugar de ser exclusivamente para gráficos, pudiendo explotar aśı su paralelismo con muchos núcleos
pero muy simples.

En esta revolución de aceleradores, empezamos a usar las FPGAs como hardware reconfigurable
en tiempo de ejecución, en lugar de solo ser usadas como prototipado. A su vez, existen los ASICs,
hardware espećıfico aún más potente y eficiente que las FPGAs, siendo el ejemplo más conocido los
minadores de bitcoins, ASICs desarrollados para hacer la función SHA256.

Con la gran cantidad de aceleradores disponibles, resulta extremadamente tedioso desarrollar apli-
caciones capaz de usar varios aceleradores, ya que cada uno dispone de un lenguaje de programación
propio denominado DSL. Para poder extraer el potencial disponible de un dispositivo hardware, re-
sulta necesario el uso de su DSL. Por lo tanto, una aplicación que quiera extraer toda la potencia
de cómputo que existe actualmente en los clústers heterogéneos, tiene que realizar distintas versiones
del mismo código fuente, una para cada dispositivo que desee utilizar, incrementando radicalmente la
complejidad del código.

Para facilitar el desarrollo de estas aplicaciones, existen los modelos de programación de alto
rendimiento, los cuales facilitan la programación en entornos de alto rendimiento. Sin embargo, existen
una gran cantidad de estos, y no hay ninguna clasificación actualizada de los modelos existentes. A
pesar de esto, hay un pequeño estudio de 2013, sin embargo la mayoŕıa de los modelos clasificados
están en desuso.

A partir de esto, hemos desarrollado una clasificación de 23 modelos de programación de alto
rendimiento de 50 que hemos revisado, siendo descartados la mayoŕıa por estar descontinuados o haber
sido mezclados con otros modelos ya existentes. Pero para saber las caracteŕısticas principales que
debe tener la clasificación, hemos empezado por coger varios modelos conocidos, y hemos examinado
sus caracteŕısticas para ver cuales son los puntos importantes a revisar. Entre estos modelos hemos
elegido a OpenMP, OpenACC, OmpSs, OpenCL, SYCL, Kokkos, y PHAST. De esta selección, hemos
concluido que una posible clasificación estaŕıa basada en 4 caracteŕısticas: las plataformas soportadas,
el tipo de modelo, el paradigma de programación, y el paradigma de memoria.

De esa clasificación de 23 modelos, hemos extráıdo 8 que cumplen la caracteŕıstica de ser portables
entre dispositivos, hay varios más, pero esto solo es una pequeña muestra. En estos 8 hemos observado
los dispositivos que soportan, y los cambios que se deben realizar para usar el mismo código en otra
plataforma.

Con toda esta información, hemos elegido PHAST para realizar este proyecto, en el cual hemos
escogido el framework de deep learning Caffe, y hemos portado la funcionalidad del framework para ser
portable entre plataformas. Este trabajo lo hemos realizado en colaboración los creadores de PHAST,
pudiendo obtener aśı acceso temprano a la libreŕıa y teniendo su soporte durante el desarrollo.

En primer lugar Caffe tiene dos versiones del código fuente, una para CPU y otra para GPU, hemos
eliminado el código de GPU para usar el CPU como base durante el desarrollo. Posteriormente hemos
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RESUMEN

observado el funcionamiento de Caffe como bloques, y hemos decidido portar la funcionalidad mı́nima
necesaria para ejecutar dos redes basadas en LeNet disponibles como ejemplos de Caffe, una para la
base de datos de MNIST y otra para CIFAR. Los bloques necesarios a portar son: Blob, Convolution,
Pooling, InnerProduct, ReLU, SoftMax, SoftMax with Loss, y Accuracy.

Durante el trabajo, hemos usado la versión 1.0.1 de PHAST con GCC 6.30 y Cuda 9.0, usando
como base Caffe obtenido del repositorio oficial en github. Con esta configuración, y un a máquina
con dos Intel Xeon CPU E5-2603 v3 @ 1.60 GHz y una Geforce GTX 1080 8GB, hemos conseguido
ejecutar satisfactoriamente ambas radas para CPU y GPU. Siendo el único cambio necesario el uso
de un makefile u otro dependiendo de la plataforma deseada.

Adicionalmente, hemos decidido ejecutar los tests de Caffe para comprobar el estado actual de
nuestro proyecto respecto a la implementación original, y a excepción de la funcionalidad no imple-
mentada, pasamos todos los tests. Y al ser un proyecto todav́ıa en desarrollo, no tenemos resultados
de rendimiento válidos, pero como primer vistazo, obtuvimos un 10x de perdida de rendimiento, que
mejoró un 2x tras una pequeña revisión del código. Sin embargo, los casos de prueba son demasi-
ado pequeños como para tenerlos en cuenta, y estamos convencidos de que pueden ser mejorados
modernizando nuestro código modernizado.

Tras este trabajo, pensamos que nuestra clasificación puede ser usada como base para seguir
clasificando el resto de modelos existentes, cosa que se queda como trabajo futuro. Y entre estos
trabajos futuros también se encuentran pendientes terminar la adaptación de Caffe a PHAST, extender
el trabajo a múltiples dispositivos, y mejorar el rendimiento obtenido.
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INTRODUCTION

1. Introduction

Since the start of computing, the performance was always a limit to break. In the beginning, the way
to break this limit started by increasing the frequency of each CPU generation. Additionally, CPUs
started to include more and more transistors. This worked for a lot of time, creating the Moore’s
Law (every two years, the transistors in dense integrated circuit was doubled). But, near to the early
2000s, processors were very near to reach its limit in power density [1]. Changing to another paradigm
was necessary to continue improving the performance, the creation of multi-cores.

After all the new unlocked performance for CPUs, there are several things that other hardware
devices are able to do faster and more efficient. In instance, real-time graphics processing continue
to be done by specific accelerators (GPUs). These devices are developed with different paradigms in
mind, and normally to be very efficient in only one task. GPUs have many more cores than a CPU,
but they are simpler.

Another well-known accelerator is the Field Programmable Gate Array (FPGA), created in the
beginning as a hardware prototyping device. Nowadays, they are also used in many other tasks like a
reprogrammable accelerator.

Low power high-performance devices are highly demanded, and specific architectures builtin in-
side an Application-Specific Integrated Circuit (ASIC) are getting a lot of attention. Many custom
architectures are being developed for Neural Networks, Physics, Simulations, etc.

These accelerator devices have shown that CPUs are not always the best option to solve a problem.
As the multi-core era is ending, Domain Specific Architectures (DSAs) are getting the testimony [2].

On the other hand, meanwhile CPUs started to get relevant performance, machine learning fired.
One of the most powerful machine learning techniques is Deep Neural Networks (DNNs), but their
algorithms required a lot of computing time. Until now, a vast machine learning algorithms have been
developed and improved.

Once the technology was able to process DNN algorithms in reasonable times, they have become
more and more ubiquitous in everybody’s daily life. Image classification, language processing, eco-
nomics, medicine, video games, among others, are some of the fields where DNNs are being used.
They are trying to improve, but requiring more time, and accelerators are used to reduce the amount
of time needed.

In this new era of accelerators, the creation of a programming model able to use all this kind of
new accelerators is extremely important [3]. This new approach is called performance portability [4],
and it is not yet completely solved.

In this work, we have focused on the following objectives.

• Search for relevant programming models for multiple device programming: There
are a vast of programming models for multiple devices, therefore we want to find and classify
them.

• Learn to use a high performance programming model: Like any other programming
paradigm, these programming models have their own way to be used. Being able to use one of
them could not be an easy task.

• Apply the previously selected model to a real application: A new programming model
can be awesome, but if it is not used, it has meaningless.

The ultimate goal of this work is to have a programming language that allows that one source
code can be run in CPU or GPU with only recompiling it with the right options, and in addition, that
could be targeted to other devices with no changes (in the source code). When it is finished, we will
release it to allow everyone to use it freely.
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BACKGROUND

2. Background

2.1 CPU Revolution

The multi-core revolution, after reaching the power density limit in traditional processors, allowed
the creation of a new paradigm where the increase of throughput is based in the parallel execution of
multiple independent workloads. Most of the computer power in data centers was brought by mono-
and multi-core CPUs.

From some time ago, some researchers, most of them in computer vision, noticed that the GPUs,
that they were already using, were able to solve their problems faster. At the begining, they started
using programming languages for graphics, like OpenGL to implement some algoriths [5].

2.2 Accelerator Revolution

2.2.1 GPU & GPGPU

The most known accelerator is the GPU, able to generate graphics and compute data at high speed
exploiting its Single Instruction Multiple Threads (SIMT) execution model, based in Single Instruction
Multiple Data (SIMD) but with multithreading. Nowadays, GPUs are used like CPUs (GPGPU), we
have specific languages to use them such as Cuda, or OpenCL. It is probably the most used accelerator.

2.2.2 FPGA

A FPGA is a configurable integrated circuit, built from an array of logic blocks and routing channels [6].
Each block is able to represent a little mathematical function, and connecting many of them, it is
possible to build very complex devices.

In the beginning, it was mainly used for prototyping, but now it is also used as accelerators. There
will no be as fast as a ASIC, but they can be reconfigured and can be used to implement any part of
a program.

2.2.3 ASIC

To be faster than a FPGA and more power efficient, ASIC is developed and use in specific tasks. We
have several ASICs currently in our devices. From the lowest computer expensive ones like the usb or
keyboard controllers, to the bitcoin miners, which are ASICs developed to make the SHA256 function.

2.2.4 The problem

There are a vast of accelerators ready to be used and most of them are problem specific. Each one of
these accelerators use its own programming language, a Domain Specific Language (DSL). Using the
specific DSL for each device allows to benefit from the specific features of that device [2].

The problem with this accelerator boom is that each DSL is quite different. Therefore, making a
portable software between accelerators is impossible without having multiple source files (at least one
file per target device). Maintaining software with multiple source code files for the same functionality
in different platforms is a very tedious task, greatly increasing the code complexity [7].

2.3 ML & DNNs

2.3.1 Development and usage

Theoretical and mathematical models of the artificial intelligence techniques were developed in the
twentieth century, but the lack of computing power prevented it from progressing. Artificial Neural
Networks (ANNs) are a type of brain-inspired learning algorithm, built from small units called neurons,
being the perceptron the most common one. With the recent advances, deep neural networks have
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BACKGROUND

been incorporated into numerous fields, such as image classification, language processing, economics,
video games, and medicine. In some tasks, this new technology is being able to outperform human
performance.

Medical image analysis has started to implement deep learning for screening and localization of
malignant zones. Additionally, other medical areas are working with these kind of techniques as well,
like the analysis of the genetic information inside DNA and RNA series [8]. The common objective is
not replace physicians with deep learning techniques but supporting them to make better diagnoses.

2.3.2 Evolution with HPC

Machine learning techniques could be difficult to code and debug, therefore many frameworks have
been developed to ease its use. Most of them are open source with software for most of the types of
neural networks. The most known ones are Caffe, Caffe2, Tensorflow, Theano, PyTorch, Mxnet, and
CNTK among others [9]. And there are frameworks like Keras, providing a more high-level experience,
running on top of some of the aforementioned frameworks.

Specifically, the training phase is very time-consuming, since it is evaluating an optimization
problem with hundreds, thousands, or even millions of parameters. Therefore, the reduction of the
training phase execution time is a desirable feature for all frameworks. Thanks to this shorter training
time, scientists using these frameworks can explore a wide solution space, and even develop more
complex networks.

Therefore, most frameworks are able to use Nvidia’s cuDNN, BLAS-like libraries, MKL-libraries,
OpenCL, even specific libraries for custom integrated circuits, to speed up this computation. Also,
many of them also allow other kind of parallelism for multiple nodes (using the MPI library).
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3. An overview of high performance parallel programming models

3.1 Performance Scaling Problems

A High Performance Computing (HPC) cluster can run a vast of different jobs, each one specialized
in different kinds of applications. Tradicional clusters had many difficulties in scaling the applications
they had to run. One of the mitigations taken was the use of heterogeneous clusters instead of the
traditional ones. They are more flexible, allowing the use of the specific resources to fit the application
better.

Now, we have several different architectures together to be used by the applications, but this is
not as easy as it may appear. An application needs to have the code to be run in each one of this
architectures to be able to use the cluster efficiently.

3.2 High Performance Programming Models

There are many things to keep in mind to be able to program an HPC cluster efficiently, such as
dependencies, communications, locks, possible failures, without forgetting multiple versions of the
same code for each available architecture.

To address this problem, there are many programming models to help developers writing efficient
code. In instance, OpenMP tackles multi-core but locally in the same machine, and MPI tackles the
communication between nodes. But, these are low-level approaches, there are others with a higher
abstraction level.

We want to know which programming models are available, which is the main focus of each one,
and their characteristics, such as the programming paradigm or the memory abstraction model. But
only partial classification have appeared. There is a interesting survey from 2013 [10], but many of
those models are now deprecated. Therefore, we start to classify some of them, but to know which
features are important, we start by selecting a few and looking for their main details.

3.3 Some High Performance Programming Models

This first selection of programming models is done with the idea of having at least one well-known
programming model with different approaches. But, also with two very similar approaches to be able
to find their differences. We think that we are able to find the main features of the programming
models to classify them.

3.3.1 OpenMP

OpenMP is a specification for a set of compiler directives, library routines, and environment variable
that can be used to specify high-level parallelism in Fortran and C/C++ programs [11]. These
directives are also known as pragmas, they give information to the compiler about what to do with
a statement. And, as it is only an Application Programming Interface (API), compilers have the
responsibility of implementing it.

Nowadays, OpenMP has improved a lot; from being able to parallelize loops to currently use devices
as accelerators. The API has an offload option, allowing the usage of some accelerators compatible
with the implementation. For instance, the Intel Compiler supported the Xeon Phi KNC Coprocessor
as an offloading target. But now, a lot of compilers are making a lot of effort trying to accomplish the
GPU support using offload.

Depending on the point of view, it is possible to refer to OpenMP as a kernel or a task programming
model. However, the main feature of OpenMP is the use of directives to annotate the source code in
an elegant and efficient way. It is focused on shared memory environments using multi- and many-core
CPUs.
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3.3.2 OpenACC

OpenACC is a specification for a set of compiler directives performance-portable parallel programming
model designed for scientists interested in porting their codes to a wide variety of heterogeneous HPC
hardware platforms and architectures [12]. Similar to OpenMP, it is only an API which needs to be
supported by compilers.

Like OpenMP, it is a directive-based programming model but focused in heterogeneous hardware,
which means that OpenACC is expecting to be run from a CPU to an accelerator device, like another
kind of CPU or a GPU.

3.3.3 OmpSs

OmpSs is a programming model developed at Barcelona Supercomputing Center (BSC) with the
objective of merging StarSs with OpenMP as a way of extending its directives to support asynchronous
parallelism and heterogeneity [13]. Nowadays, it supports Intel CPUs, Nvidia GPUs, Intel Xeon Phi
KNC (native and offload), IBM Power8, ARM CPUs, and OpenCL compatible MALI GPUs. Also, it
is evolving into OmpSs-2, a new programming model with a different approach.

OmpSs is builtin in the Mercurium Compiler and executed by the Nanos++ runtime system. Also,
similar to OpenMP and OpenACC, it is a directive-based programming model, but in this case, tasks
are the main focus.

3.3.4 OpenCL & SYCL

OpenCL has a very different approach to OpenMP, it is a kernel based programming model, and it
is nearer to a language instead of an API. It is an open standard originally developed by Apple, but
currently maintained by Kronos [14]. OpenCL depends on a Installable Client Driver (ICD), which
manages all of the OpenCL calls. First, a loader retrieves all the available ICDs. After preparing
the context of the execution, kernels get compiled to that specific platform at runtime and executed
through the ICD.

SYCL is a specification over OpenCL to enable single source C++ programming to OpenCL, and
Khronos expects to be a step forward in standards convergence. SYCL is very similar to OpenCL,
but with many features from new C++ standards (11, 14, and 17) and enabling the C++17 parallel
Standar Template Library (STL).

3.3.5 Kokkos

With a totally different approach, Kokkos is one of the modernist approaches available. It is a new
C++ library with a lot of ideas from STL containers and algorithms. The main objective of Kokkos
is to maximize the amount of user code that can be compiled for diverse devices and obtain the same
performance as a variant code specifically written for that device [15].

It defines a new template type called View, that is used to allocate the data that will be used later.
In this View type, it is possible to build an n-dimensional structure to be used as a container to be
modified by the functions.

Kokkos allows the creation of new functions to modify the data stored in Views, but it needs to be
encapsulated into a class with some restrictions and with the main entry point made with the operator
‘()’. This is a functor, and it is a concept borrowed from the C++ STL. These functors are run from
special functions with a similar nomenclature as the algorithms library in C++ STL.

3.3.6 PHAST

Continuing with the previous idea, Parallel Heterogeneous-Architecture STL-like Template (PHAST)
library [16–19] is a modern C++ programming template library based on the classic STL containers
with the performance portability philosophy. It currently supports multi-core CPUs and Nvidia GPUs,
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allowing the users to write expressive and concise sequential-like code that can be automatically
parallelized. Its main goal is to let the programmers code using high-level programming approaches
without preventing them from applying low-level optimizations, keeping the main code at a higher
level of abstraction.

Similar to STL containers, PHAST provides a vector container but extending it with matrix, cube,
and grid, all of them working with a very similar interface. Also having vectors like primitives similar
to an SSE or AVX vectors.

These containers can be modified using functors. Similar to Kokkos, the idea of a functor is
borrowed from STL as a struct that inherits from a base functor struct and at least has the operator
‘()’ defined. There are a lot of algorithms and factors predefined, but this allows the creation of
functionality that is not defined by default in the library, without losing performance or portability.

In its roadmap, there is planned support for multiple devices in the same executable, lambda
syntax, FPGA support, OpenCL backend, multi-GPU, and many other interesting features.

After writing the sequencial code in the PHAST way, it is possible to change the device target
changing a macro and the compiler. Therefore, having two different makefiles makes the trick. The
most important thing is that the code has not changed, only the compiling process.

3.4 Classification

With this little overview of some programming models, we can proceed to classify them. But, first,
it is necessary to specify which features we will be looking for, and a definition of it. There are some
terms that could be misunderstandings or misinterpreted, and in this way, there will not be any kind
of confusion.

3.4.1 Platforms

With the accelerators revolutions, there are a lot of devices that could be interesting, but in this case,
we focus on CPU, GPU, and FPGA, without paying attention on any specific manufacturer.

3.4.2 Type

Depending on the requirements of modifying existing compiling architectures, we have defined 3 types
of programming models:

• Language: A new set of primitives using a new compiler or a runtime system to run, such as
Cuda or OpenCL.

• Extension: A modification to the compiler to add a set of directives or even primitives to be
used in an existing language. These modifications may require a runtime system to run, but the
original language is barely modified. An example of this could be OpenMP or AllScale.

• Library: Without any kind of modification to the existing compilers, it adds a set of primitives
to be used in a program using the language specification. It could be a shared library or even a
set of files to add to the compiling state. MPI, Phast, and TBB are good examples of a library.

3.4.3 Programming Paradigm

Each high-performance programming model has its own type of programming paradigm, i.e., how it
is intended to be used. Most of the programming models can be classified into multiple programming
paradigms. These are the programming paradigm we have taken into account:

• Kernel: Time-expensive parts are encapsulated into a special section that can be compiled
apart, and it can be executed by other parts of the code. For instance, OpenCL creates kernels
that are compiled in runtime and executed in the target platform.
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• Task: The program is split into several tasks and they are run following the dependency graph.
This can be very confusing because it is possible to use a kernel programming model as a task
one, but it is not the same paradigm.

• Directive: Using a reduced set of primitives, it sets to the compiler what to do with a statement.
It could be achieved with a set of functions or a set of pragmas.

• C++ Template: With the creation of C++11 and C++14 standard, the interest in the STL
grew, new containers and the algorithm library extended its usage. In this paradigm, the data is
stored in a set of containers, and only are modified using the functions available by an algorithm-
like library, that usually allows to extend this set of functions. The functions executed by the
algorithm-like library could seem like kernels, but the concept and data management is very
different.

• Skeleton: The program has to be mapped to use a set of generic components with a specific
pattern of computation and data dependence. For example, a dot product can be implemented
as a MapReduce of multiplication and addition.

• Wrapper: In a wrapper programming model, it inherits the underlying programming paradigm,
but encapsulating the functionality.

• Threads: This is not a programming paradigm by itself, as depending on the usage of the
created threads it could be used as any paradigm.

3.4.4 Memory Paradigm

Memory paradigms are a bit tricky. Some of them are very similar, but the high-level concept is
different, therefore we have split them into 6 categories.

• Hierarchical: Implicitly or explicitly copied, a hierarchical memory paradigm is shown when
there are a host and at least one slave that is going to exchange information. It is normally
associated with a CPU host and a device (like a GPU).

• Shared: In a shared memory environment, at any moment is possible to read or write at any
part of the memory. Excluding conflicts between threads, devices, or compute units, all the
memory is visible.

• Implicit: All memory transactions are handled by the programming model, without the in-
volvement of the program. In some cases, the programming model allows to explicitly manage
this memory, but it is not necessary.

• Explicit: This is exactly the opposite of implicit memory. The programmer must handle all
memory transactions. In some cases, some of these transactions can be implicit if they are simple
enough.

• PGAS: Partitioned Global Address Space (PGAS) assumes that there is a global memory
address space, but it is logically partitioned to each thread, device, or computer unit.

• Distributed: Each thread, device, or compute unit has its own complete memory. Distributed
memory is able to exchange data, but it is not necessary. In some cases, it is very similar to the
explicit memory paradigm and hierarchical.

3.4.5 Table

With all this information, we have selected a total of 23 high-performance programming models from
about 50 reviewed programming models to be classified in Table 1. Many of the discarded models are
discontinued or have been merged into another one.

Page 7



AN OVERVIEW OF HIGH PERFORMANCE PARALLEL PROGRAMMING MODELS

C
P

U

P
ro

gr
am

in
g 

P
ar

ad
ig

m
M

em
or

y 
P

ar
ad

ig
m

K
er

ne
l

T
as

k
D

ire
ct

iv
e

C
+

+
 T

em
pl

at
e

S
ke

le
to

n
W

ra
pp

er
T

hr
ea

ds
H

ie
ra

rc
hi

ca
l

S
ha

re
d

Im
pl

ic
it

E
xp

lic
it

P
G

A
S

D
is

tr
ib

ut
ed

T
yp

e

La
ng

ua
ge

O
pe

nC
L

C
ilk

Li
ft

O
pe

nC
L

C
ilk

Li
ft

E
xt

en
si

on
C

ilk
O

pe
nM

P
O

pe
nA

cc
O

pe
nM

P
C

ilk
A

llS
ca

le
O

m
pS

s
A

llS
ca

le
O

m
pS

s
O

pe
nM

P
O

pe
nA

cc

Li
br

ar
y

S
yC

L
K

ok
ko

s
T

B
B

M
P

I
P

ha
st

D
as

h
S

ke
P

U
E

as
yC

L
P

th
re

ad
s

S
ke

P
U

P
ha

st
P

ac
xx

V
2

E
as

yC
L

T
hr

us
t

D
as

h
S

yC
L

T
B

B
P

ac
xx

V
2

M
ul

tiC
on

tr
ol

le
r

S
ta

rP
U

T
hr

us
t

S
ke

C
L

B
oo

st
.C

om
pu

te
S

ke
C

L
K

ok
ko

s
M

P
I

B
oo

st
.C

om
pu

te
M

ul
tiC

on
tr

ol
le

r
S

ta
rP

U
P

th
re

ad
s

G
P

U

P
ro

gr
am

in
g 

M
od

el
M

em
or

y 
M

od
el

K
er

ne
l

T
as

k
D

ire
ct

iv
e

C
+

+
 T

em
pl

at
e

S
ke

le
to

n
W

ra
pp

er
T

hr
ea

ds
H

ie
ra

rc
hi

ca
l

S
ha

re
d

Im
pl

ic
it

E
xp

lic
it

P
G

A
S

D
is

tr
ib

ut
ed

T
yp

e

La
ng

ua
ge

O
pe

nC
L

Li
ft

O
pe

nC
L

Li
ft

C
ud

a
C

ud
a

E
xt

en
si

on
O

pe
nM

P
O

pe
nA

cc
O

pe
nM

P
O

m
pS

s
O

m
pS

s
O

pe
nM

P
O

pe
nA

cc

Li
br

ar
y

S
yC

L
K

ok
ko

s
P

ha
st

D
as

h
S

ke
P

U
E

as
yC

L
S

ke
P

U
P

ha
st

P
ac

xx
V

2
E

as
yC

L
T

hr
us

t
D

as
h

S
yC

L
P

ac
xx

V
2

M
ul

tiC
on

tr
ol

le
r

S
ta

rP
U

T
hr

us
t

S
ke

C
L

B
oo

st
.C

om
pu

te
S

ke
C

L
K

ok
ko

s
B

oo
st

.C
om

pu
te

M
ul

tiC
on

tr
ol

le
r

S
ta

rP
U

F
P

G
A

P
ro

gr
am

in
g 

M
od

el
M

em
or

y 
M

od
el

K
er

ne
l

T
as

k
D

ire
ct

iv
e

C
+

+
 T

em
pl

at
e

S
ke

le
to

n
W

ra
pp

er
T

hr
ea

ds
H

ie
ra

rc
hi

ca
l

S
ha

re
d

Im
pl

ic
it

E
xp

lic
it

P
G

A
S

D
is

tr
ib

ut
ed

T
yp

e

La
ng

ua
ge

O
pe

nC
L

O
pe

nC
L

E
xt

en
si

on
O

m
pS

s
O

m
pS

s

Li
br

ar
y

S
yC

L
E

as
yC

L
E

as
yC

L
S

yC
L

S
ke

C
L

S
ke

C
L

Ta
bl

e
1:

H
ig

h
P

er
fo

rm
an

ce
P

ro
gr

am
m

in
g

M
od

el
s

C
la

ss
ifi

ca
ti

on
T

ab
le

:
H

LS
ha

s
be

en
di

sc
ar

de
d

be
ca

us
e

it
de

pe
nd

s
he

av
ily

on
th

e
m

an
uf

ac
tu

re
r.

Li
br

ar
ie

s
lik

e:
C

+
+

A
M

P,
A

rr
ay

Fi
re

,P
O

C
L,

H
al

id
e,

R
aj

a,
T

ira
m

isu
,N

O
VA

,B
ol

t,
Fa

st
Fl

ow
,M

ue
sli

,C
ha

pe
lX

10
,U

PC
,a

m
on

g
m

an
y

ot
he

rs
,h

av
e

be
en

om
itt

ed
be

ca
us

e
so

m
e

of
th

em
ha

ve
be

en
di

sc
on

tin
ue

d
an

d
ot

he
rs

ha
ve

ev
ol

ve
d

in
to

ne
w

m
od

el
s.

So
m

e
hi

gh
lig

ht
s:

-
O

pe
nM

P
is

in
tw

o
m

em
or

y
pa

ra
di

gm
s

at
th

e
sa

m
e

tim
e

be
ca

us
e

th
e

de
vi

ce
ta

rg
et

m
od

e
is

hi
er

ar
ch

ic
al

.
-

C
ilk

is
in

tw
o

m
od

el
ty

pe
s

be
ca

us
e

is
an

ex
te

ns
io

n
bu

t
ha

s
fe

at
ur

es
of

a
ne

w
la

ng
ua

ge
.

-P
H

A
ST

is
th

e
on

ly
C

+
+

te
m

pl
at

e
pa

ra
di

gm
w

ith
im

pl
ic

it
m

em
or

y
tr

an
sfe

re
nc

e.
-A

ll
FP

G
A

s
pr

og
ra

m
m

in
g

m
od

el
s

ar
e

ba
se

d
in

O
pe

nC
L.

Page 8



AN OVERVIEW OF HIGH PERFORMANCE PARALLEL PROGRAMMING MODELS

3.5 Portable Programming Models

Single source programming targeting multiple devices is a development goal to be accomplished.
Performance portability is the programming paradigm with the ability to resolve the problem. It
recalls well-establish highly-expressive techniques. For instance, programming is done using a set of
primitives to develop complex programs, and most of the performance portability techniques use the
same approach but with higher level primitives.

3.5.1 Classification

When trying to use multiple devices, some of these models could not be enough, but there are others
with the characteristic of being single source programming models. We have extracted some of these
models from our research (shown in Table 2) and find their principal device targeting and the changes
needed to use the same source code in a different device.

Programming Programming Memory Devices Changes to
Model Paradigm Paradigm other device

OpenMP Directive Hierarchical CPU, GPU Few changes
Shared Others (only the directives)

OpenAcc Directive Hierarchical CPU, GPU Few changes
FPGAs, Others (only the directives)

OmpSs Directive Hierarchical CPU, GPU Few changes
FPGAs, Others (only the directives)

OpenCL Kernel Hierarchical CPU, GPU ICD, loader,
FPGAs, Others few changes

SyCL Kernel Hierarchical CPU, GPU ICD and LoaderFPGAs, Others

SkePU Skeleton Explicit CPU, GPU Recompile

Kokkos Kernel Explicit CPU, GPU, RecompileOthers

PHAST C++ Template Implicit CPU, GPU Recompile

Table 2: Single Source Programming Models: Some of the models from Table 1 that are single
source programming models, and the changes needed to use the same code to another device.
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4. PHAST applied to the Caffe Framework

4.1 Why PHAST

PHAST code can be written once and targeted to different devices via a single macro. Its inner
layers are implemented in Cuda C++ or std::threads so to allow targeting on Nvidia GPUs and
multi-core CPUs. These layers are not part of the interface, so users can express their code in a
platform-independent way. In fact, PHAST programmers can code their applications in terms of
containers, iterators, and algorithms in an STL-like, thus using common sequential techniques [18].

As we have said in the previous section, PHAST use functors to modify the data stored in con-
tainers. This idea of a functor is borrowed from STL as a struct that inherits from a base functor
struct and at least has the operator ‘()’ defined. These functors are executed like kernels, therefore it
is possible to see it like a loop calling the function in each iteration using each time the next element
in the containers.

Despite PHAST promoting an architecture-agnostic programming style for productivity reasons,
some small portions of code could benefit in performance from leveraging low-level architecture-specific
features and optimizations. Well-known techniques like code replication on GPUs or the use of intrin-
sics on multi-cores are examples of this kind of low-level optimizations. Due to a possible performance
gain, PHAST users could be willing to specialize some portions of their code according to the un-
derlying device. PHAST does not prevent them from doing so, and low-level architecture-specific
optimizations are still possible under the scope of ifdefs or similar constructs.

To test the PHAST library, it has been used to implement some applications such as AES [17],
TRIAD [18] and DCT8x8 [18]. Also, an implementation of a histogram-stretching and an unsharp-
mask filter is available as a set of tasks [19].

The PHAST library is available through request at its web page1, but as part of a joint collabora-
tion, we have early access to it.

4.2 The Caffe Framework

Caffe is the first DNN framework, developed by Berkeley AI Research. Nowadays, in the production
environment, Caffe is replaced by Caffe2 and pyTorch, the Caffe successors, but in other cases, Ten-
sorFlow and MXNet are the selected ones. Caffe continues to be used in researching, due to the fact
that it is very easy to modify, extend, or use, all of this without losing flexibility to run most of the
state-of-the-art DNN models.

Caffe is a very good framework that runs on CPU or GPU only changing a flag, but this is done
by having two implementations in two sorce codes files, one for CPU (.cpp) and other for GPU (.cu).
Therefore, developers are forced to maintain two different versions of the same functionality. In this
case, this is very well done and there are not a large number of differences between the files being the
perfect target for a single source approach.

Before starting, an overview of the Caffe’s internal structure, is given next. Caffe is built from
multiple modules that work by themselves. It is possible to classify the blocks in two parts, containers
and executors. Containers store data to be used by executors. Executors use the containers to
exchange data and process it. For example, a layer gets a set of blobs, and with its own blobs, it
computes the output ones.

A neural network has two different phases, inference and training. In the inference phase, data is
passed through all the layers of the neural network in feed-forward mode to reach the last layer and
get a result. But, in training mode, data is passed through all layers in feed-forward, like inference,
but when it reaches the last layer of the network, that data is brought to a solver, it recalculates some
values and starts the back-propagation through each layer but in reversed direction.

In this work, we are going to port all the blocks needed to be able to run two LeNet variations
from example networks in Caffe for MNIST and CIFAR-10 databases. The blocks we need to port are

1https://www.phast-library.com/
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Figure 1: Part of the Caffe framework as a block diagram showing communications between blocks.

Blob, InnerProduct, Convolution, Pooling, ReLU, Accuracy, SoftMax, and SoftMax with Loss. We
expect to run these neural networks through the Caffe binary in train and test mode using PHAST,
therefore, we choose to modify only the blob and the lowest part of the main executors (Figure 1).

4.3 Development

We have removed the GPU code from Caffe to use the CPU version as our base for this project. In
this way, we can focus on the algorithm itself and not in its GPU implementation.

From each block (or layer), we explain its most relevant part, showing its code compared to the
original implementation. Sometimes, this new code is larger, but it is portable across the platforms
that PHAST supports. We will show some functors related to its own block, but all of them are
collected in one file, enabling the shared use of them.

4.3.1 Blob

The Blob block is a container for all the information in the neural network. It has to store two big
arrays of data to be used at any required executor. The first array is named data and the second is
diff. data is used as part of the feed-forward step. On the other hand diff is used to modify data
at the back-propagation step.

Despite the fact that Caffe supports two data types, floating point in single and double precision,
the Caffe binary only supports single precision, but using the python binding is possible to access to
the double precision. Also, other data types are unsigned and signed integer that are used as extra
information for the rest of the framework. One problem we found is that the current version of PHAST
allows only single precision floating point numbers, therefore we have to override the Blob data type
to use PHAST containers only when is possible.

The Blob block depends on the SyncMemory block to manage the memory, and depending on if
the GPU is being used or not, it allocates the memory and manages the syncing process (Figure 2a).
In our case, since we are only modifying a part of the framework, all the remainder part has to interact
with our container, therefore we used the same trick as the GPU version of SyncMemory and have
two containers, a host raw pointer and a PHAST vector (Figure 2b).

Although the Blob block is a container, it has some functionality inside. All of this functionality
has been ported to PHAST, and we have added some extra functionality respecting to the PHAST
vector container to convert it to another container (like a matrix or a cube) using a shallow copy.
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Figure 2: The Blob block from original Caffe (a) and the instanced version for single precision floating
point numbers using PHAST (b).

4.3.2 Convolution

4.3.2.1 Feed-Forward

The Convolution block, or Convolution Layer, applies to the input a set of filters using a sliding
window over the input. There are many ways to implement this sliding window, but applying the
filter is doing a vector inner product for each sliding window. The most common variant of Convolution
is Convolution 2-D (Figure 3), which is a simplification of a Convolution N-D.

As our sample network only use Convolution 2-D, we only port that specific variation. There is
not much difference between a Convolution 2-D and a Convolution N-D, because we use the im2col
+ gemm implementation.

The im2col + gemm implementation is a way to map a convolution as a matrix multiplication
(General Matrix Multiplication (GeMM)), but a data manipulation is needed to accomplish it. The
im2col function maps the input matrix into columns to make the Convolution using a GeMM (Figure
4).
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Filter
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b·w + e·x +
+ c·y + f·z

e·w + h·x +
+ f·y + i·z

h·w + k·x +
+ i·y + l·z

Output

Figure 3: A convolution example using a 2x2 filter with stride 1 and padding 0 over a 4x3 input
matrix.

The original Caffe’s im2col function is a Penta-loop with dependencies in each iteration (Listing
1), therefore we decide to adapt it to be able to exploit a bit of parallelism. To create the PHAST
version, we have merged all the loops and parametrized it with only one index (Listing 2). This change
allows PHAST to use all the threads it sees appropriate.
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Figure 4: Convolution as a GeMM using the im2col function with 2x2 filter, stride 1, and padding 0.

1 template <typename Dtype>
2 void im2col cpu(const Dtype∗ data im, const int channels,
3 const int height, const int width, const int kernel h, const int

↪→ kernel w,
4 const int pad h, const int pad w,
5 const int stride h, const int stride w,
6 const int dilation h, const int dilation w,
7 Dtype∗ data col) {
8 const int output h = (height + 2 ∗ pad h −
9 (dilation h ∗ (kernel h − 1) + 1)) / stride h + 1;

10 const int output w = (width + 2 ∗ pad w −
11 (dilation w ∗ (kernel w − 1) + 1)) / stride w + 1;
12 const int channel size = height ∗ width;
13 for (int channel = channels; channel−−; data im +=

↪→ channel size) {
14 for (int kernel row = 0; kernel row < kernel h; kernel row++)
15 for (int kernel col = 0; kernel col < kernel w; kernel col

↪→ ++) {
16 int input row = −pad h + kernel row ∗ dilation h;
17 for (int output rows = output h; output rows; output rows

↪→ −−) {
18 if (!is a ge zero and a lt b(input row, height)) {
19 for (int output cols = output w; output cols;

↪→ output cols−−) {
20 ∗(data col++) = 0;
21 }
22 } else {
23 int input col = −pad w + kernel col ∗ dilation w;
24 for (int output col = output w; output col; output col

↪→ −−) {
25 if (is a ge zero and a lt b(input col, width)) {
26 ∗(data col++) = data im[input row ∗ width +

↪→ input col];
27 } else {
28 ∗(data col++) = 0;
29 }
30 input col += stride w;
31 }
32 }
33 input row += stride h;
34 }
35 }
36 }
37 }
38 }

Listing 1: Caffe version: im2col

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct im2Col : phast::functor::func scal<T, policy> {
3
4 PHAST METHOD im2Col(int dilation h, int dilation w,
5 int stride h, int stride w,
6 int pad h, int pad w,
7 int kernel h, int kernel w,
8 int height, int width) {
9 dh = dilation h; dw = dilation w;

10 sh = stride h; sw = stride w;
11 ph = pad h; pw = pad w;
12 kh = kernel h; kw = kernel w;
13 h = height; w = width;
14 }
15
16 PHAST METHOD void operator()(phast::functor::scalar<T>&

↪→ col) {
17 int index = this−>get index();
18
19 const int oih = (h + 2 ∗ ph − (dh ∗ (kh − 1) + 1)) / sh + 1;
20 const int oiw = (w + 2 ∗ pw − (dw ∗ (kw − 1) + 1)) / sw +

↪→ 1;
21
22 const int irow = −ph + (((index / (oih∗oiw)) % (kh ∗ kw)) /

↪→ kw) ∗ dh + ((index % (oih∗oiw)) / oiw) ∗ sh;
23 const int icol = −pw + (((index / (oih∗oiw)) % (kh ∗ kw)) %

↪→ kw) ∗ dw + ((index % (oih∗oiw)) % oiw) ∗ sw;
24 if (irow >= 0 && irow < h && icol >= 0 && icol < w)
25 col = in.at(((index / (oih∗oiw)) / (kh ∗ kw)), irow ∗ w +

↪→ icol);
26 else col = 0;
27 }
28
29 int dh, dw;
30 int sh, sw;
31 int ph, pw;
32 int kh, kw;
33 int h, w;
34
35 phast::functor::matrix<T> in;
36 };

Listing 2: PHAST version: im2col

Page 13



PHAST APPLIED TO THE CAFFE FRAMEWORK

4.3.2.2 Back-Propagation

In the feed-forward stage, the im2col function duplicates some values to make a Convolution with a
GeMM. In the back-propagation, we need to apply the reverse step to propagate the gradients to the
previous layers. The most important part is the usage of col2im to map the gradients to the size of
the input data.

Like in the feed-forward stage, the original implementation is also a Penta-loop (Listing 3), there-
fore we have followed the same approach as before and we have merged the loops and parametrized
with only one index (Listing 4).

1 template <typename Dtype>
2 void col2im cpu(const Dtype∗ data col, const int channels,
3 const int height, const int width, const int kernel h, const int

↪→ kernel w,
4 const int pad h, const int pad w,
5 const int stride h, const int stride w,
6 const int dilation h, const int dilation w,
7 Dtype∗ data im) {
8 caffe set(height ∗ width ∗ channels, Dtype(0), data im);
9 const int output h = (height + 2 ∗ pad h −

10 (dilation h ∗ (kernel h − 1) + 1)) / stride h + 1;
11 const int output w = (width + 2 ∗ pad w −
12 (dilation w ∗ (kernel w − 1) + 1)) / stride w + 1;
13 const int channel size = height ∗ width;
14 for (int channel = channels; channel−−; data im +=

↪→ channel size) {
15 for (int kernel row = 0; kernel row < kernel h; kernel row++)

↪→ {
16 for (int kernel col = 0; kernel col < kernel w; kernel col++)

↪→ {
17 int input row = −pad h + kernel row ∗ dilation h;
18 for (int output rows = output h; output rows; output rows

↪→ −−) {
19 if (!is a ge zero and a lt b(input row, height)) {
20 data col += output w;
21 } else {
22 int input col = −pad w + kernel col ∗ dilation w;
23 for (int output col = output w; output col; output col

↪→ −−) {
24 if (is a ge zero and a lt b(input col, width)) {
25 data im[input row ∗ width + input col] += ∗

↪→ data col;
26 }
27 data col++;
28 input col += stride w;
29 }
30 }
31 input row += stride h;
32 }
33 }
34 }
35 }
36 }

Listing 3: Caffe version: col2im

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct col2Im : phast::functor::func scal<T, policy> {
3
4 PHAST METHOD col2Im(int dilation h, int dilation w,
5 int stride h, int stride w,
6 int pad h, int pad w,
7 int kernel h, int kernel w,
8 int height, int width) {
9 dh = dilation h; dw = dilation w;

10 sh = stride h; sw = stride w;
11 ph = pad h; pw = pad w;
12 kh = kernel h; kw = kernel w;
13 h = height; w = width;
14
15 oh = (h + 2 ∗ ph − (dh ∗ (kh − 1) + 1)) / sh + 1;
16 ow = (w + 2 ∗ pw − (dw ∗ (kw − 1) + 1)) / sw + 1;
17 }
18
19 PHAST METHOD void operator()(phast::functor::scalar<T>&

↪→ col) {
20 int index = this−>get index();
21
22 int oc = index % ow;
23 int orp = (index / ow) % oh;
24 int c = index / (ow∗oh∗kh∗kw);
25 int kr = ((index / (ow ∗ oh)) % (kh∗kw)) / kw;
26 int kc = ((index / (ow ∗ oh)) % (kh∗kw)) % kw;
27 int ir = −ph + kr ∗ dh;
28 int ic = −pw + kc ∗ dw;
29
30 if (ic >= 0 && ic < w && ir >= 0 && ir < h)
31 in.at(c, (ir + orp ∗ sh) ∗ w + (ic + oc ∗ sw)) += col;
32 }
33
34 int dh, dw;
35 int sh, sw;
36 int ph, pw;
37 int kh, kw;
38 int h, w;
39 int oh,ow;
40
41 phast::functor::matrix<T> in;
42 };

Listing 4: PHAST version: col2im
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4.3.3 Pooling

4.3.3.1 Feed-Forward

The Pooling layer applies a mathematical function to a set of numbers to get only one value, such as
maximum or minimum. Like the Convolution layer, it works using a sliding window over the input
data and applying the function to each set.

As it can be seen in Listing 5, the structure is very similar to the Convolution block, but this
time, we do not apply the same technique, because we have not enough time to verify that the merged
version works properly. Therefore, we have only parallelized the outer loop (Listing 6).

1 // The main loop
2 for (int n = 0; n < bottom[0]−>num(); ++n) {
3 for (int c = 0; c < channels ; ++c) {
4 for (int ph = 0; ph < pooled height ; ++ph) {
5 for (int pw = 0; pw < pooled width ; ++pw) {
6 int hstart = ph ∗ stride h − pad h ;
7 int wstart = pw ∗ stride w − pad w ;
8 int hend = min(hstart + kernel h , height );
9 int wend = min(wstart + kernel w , width );

10 hstart = max(hstart, 0);
11 wstart = max(wstart, 0);
12 const int pool index = ph ∗ pooled width + pw;
13 for (int h = hstart; h < hend; ++h) {
14 for (int w = wstart; w < wend; ++w) {
15 const int index = h ∗ width + w;
16 if (bottom data[index] > top data[pool index]) {
17 top data[pool index] = bottom data[index];
18 if (use top mask) {
19 top mask[pool index] = static cast<Dtype>(index

↪→ );
20 } else {
21 mask[pool index] = static cast<Dtype>(index);
22 }
23 }
24 }
25 }
26 }
27 }
28 // compute offset
29 bottom data += bottom[0]−>offset(0, 1);
30 top data += top[0]−>offset(0, 1);
31 if (use top mask) {
32 top mask += top[0]−>offset(0, 1);
33 } else {
34 mask += top[0]−>offset(0, 1);
35 }
36 }
37 }

Listing 5: Caffe version: Max Pooling

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct poolingMax : phast::functor::func mat mat<T, policy> {
3
4 PHAST METHOD poolingMax(int stride h, int stride w,
5 int pad h, int pad w,
6 int kernel h, int kernel w,
7 int height, int width) {
8 sh = stride h; sw = stride w;
9 ph = pad h; pw = pad w;

10 kh = kernel h; kw = kernel w;
11 h = height; w = width;
12 }
13
14 PHAST METHOD void operator()(phast::functor::matrix<T>&

↪→ in,phast::functor::matrix<T>& out) {
15 auto outIT = out.begin ij();
16 int index = this−>get index();
17
18 for (int i = 0; i < out.size i(); ++i) {
19 for (int j = 0; j < out.size j(); ++j, ++outIT) {
20
21 int hstart = i ∗ sh − ph;
22 int hend = smin(hstart + kh, h);
23 hstart = smax(hstart, 0);
24
25 int wstart = j ∗ sw − pw;
26 int wend = smin(wstart + kw, w);
27 wstart = smax(wstart, 0);
28
29 T num = ∗outIT;
30 for (int y = hstart; y < hend; ++y) {
31 for (int x = wstart; x < wend; ++x) {
32 if (num < in[y][x]) {
33 num = in[y][x];
34 mask.at(index , i, j) = y ∗ w + x;
35 }
36 }
37 }
38 ∗outIT = num;
39 }
40 }
41 }
42
43 phast::functor::cube<T> mask;
44
45 int sh, sw;
46 int ph, pw;
47 int kh, kw;
48 int h, w;
49 };

Listing 6: PHAST version: Max Pooling
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4.3.3.2 Back-Propagation

During the feed-forward stage, we have stored from where we have been taking each output value,
therefore we have to map the values from the output to the input using that list of mapped values.
Its objective is to apply all the gradients to its corresponding positions.

Like in the feed-forward stage, we have not merged all the loops (in Listing 7), because we did
not verified that it will continue working properly. Therefore, we have only parallelized the first loop
(Listing 8).

1 for (int n = 0; n < top[0]−>num(); ++n) {
2 for (int c = 0; c < channels ; ++c) {
3 for (int ph = 0; ph < pooled height ; ++ph) {
4 for (int pw = 0; pw < pooled width ; ++pw) {
5 const int index = ph ∗ pooled width + pw;
6 const int bottom index =
7 use top mask ? (int)top mask[index] : (int)mask[index];
8 bottom diff[bottom index] += top diff[index];
9 }

10 }
11 bottom diff += bottom[0]−>offset(0, 1);
12 top diff += top[0]−>offset(0, 1);
13 if (use top mask) top mask += top[0]−>offset(0, 1);
14 else mask += top[0]−>offset(0, 1);
15 }
16 }

Listing 7: Caffe version: Back Max Pooling

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct poolingMaxBack : phast::functor::func mat mat<T, policy>
↪→ {

3 PHAST METHOD poolingMaxBack(int pooled h, int pooled w,
↪→ int width) {

4 ph = pooled h; pw = pooled w;
5 w = width;
6 }
7 PHAST METHOD void operator()(phast::functor::matrix<T>&

↪→ bottom,phast::functor::matrix<T>& top) {
8 int channel = this−>get index();
9 for (int i = 0; i < ph; ++i) {

10 for (int j = 0; j < pw; ++j) {
11 int index = mask[channel][i][j];
12 int y = index / w; int x = index % w;
13 bottom[y][x] += top[i][j];
14 }
15 }
16 }
17 phast::functor::cube<T> mask;
18 int ph, pw;
19 int w;
20 };

Listing 8: PHAST version: Back Max Pooling

4.3.4 InnerProduct

4.3.4.1 Feed-Forward

In neural networks, there is a layer usually known as Perceptron layer (or Dense layer), sometimes is
also known as InnerProduct, because the output of the layer is the inner product of the input with
the weights.

1 template <typename Dtype>
2 void InnerProductLayer<Dtype>::Forward cpu(const vector<Blob

↪→ <Dtype>∗>& bottom,
3 const vector<Blob<Dtype>∗>& top) {
4
5 const Dtype∗ bottom data = bottom[0]−>cpu data();
6 Dtype∗ top data = top[0]−>mutable cpu data();
7 const Dtype∗ weight = this−>blobs [0]−>cpu data();
8
9 caffe cpu gemm<Dtype>(CblasNoTrans, transpose ?

↪→ CblasNoTrans : CblasTrans,
10 M , N , K , (Dtype)1.,
11 bottom data, weight, (Dtype)0., top data);
12
13 if (bias term ) {
14 caffe cpu gemm<Dtype>(CblasNoTrans, CblasNoTrans, M ,

↪→ N , 1, (Dtype)1.,
15 bias multiplier .cpu data(),
16 this−>blobs [1]−>cpu data(), (Dtype)1., top data);
17 }
18 }

Listing 9: Caffe version: InnerProduct

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct matrixPlusVectorRows : phast::functor::func vec<T, policy
↪→ > {

3 PHAST METHOD matrixPlusVectorRows() {}
4
5 PHAST METHOD void operator()(phast::functor::vector<T>&

↪→ row) {
6 for(auto r = row.begin(), i = vec.begin(); r != row.end(); ++r,

↪→ ++i)
7 ∗r += ∗i;
8 }
9 phast::functor::vector<T> vec;

10 };
11
12 template <>
13 void InnerProductLayer<float>::Forward cpu(const vector<Blob<

↪→ float>∗>& bottom,
14 const vector<Blob<float>∗>& top) {
15 phast::matrix<float> matA = bottom[0]−>getDataAsMatrix(M

↪→ , K , false);
16 phast::matrix<float> matB = this−>blobs [0]−>

↪→ getDataAsMatrix(K , N , !transpose );
17 phast::matrix<float> matC = top[0]−>getDataAsMatrix(M , N

↪→ , false);
18
19 phast::dot product(matA, matB, matC);
20
21 if (bias term ) {
22 matrixPlusVectorRows<float> matrixPlusVectorRows;
23 matrixPlusVectorRows.vec.link(this−>blobs [1]−>

↪→ getDataAsVector(N ));
24 phast::for each(matC.begin i(), matC.end i(),

↪→ matrixPlusVectorRows);
25 }
26 if(!transpose ) matB.transpose();
27 }

Listing 10: PHAST version: InnerProduct
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It is interesting that, in Listing 9 in line 13, under the condition of bias term , there is a
matrix multiplication, but in Listing 10 under the same condition in line 21, there is a call to
matrixPlusVectorRows. This is a trick made very often by Caffe, its creators have mapped all
possible operations to matrix multiplications to be easier to port them to GPU, but now, we can make
specific functors for these operations.

4.3.4.2 Back-Propagation

The InnerProduct back-propagation is a bit different from the other block we have seen. Instead
of reversing the operation made in feed-forward to map to each value its own gradient and modify
its weight, we add to the weights a scaled gradient based on the original data, then the same with
the bias, and lastly, we propagate the changes to the previous layer. Despite of the trick to map all
operations to matrix multiplications, this layer is very straight forward (Listings 11 and 12).

1 template <typename Dtype>
2 void InnerProductLayer<Dtype>::Backward cpu(const vector<

↪→ Blob<Dtype>∗>& top,
3 const vector<bool>& propagate down,
4 const vector<Blob<Dtype>∗>& bottom) {
5 if (this−>param propagate down [0]) {
6 const Dtype∗ top diff = top[0]−>cpu diff();
7 const Dtype∗ bottom data = bottom[0]−>cpu data();
8 // Gradient with respect to weight
9 if (transpose ) {

10 caffe cpu gemm<Dtype>(CblasTrans, CblasNoTrans,
11 K , N , M ,
12 (Dtype)1., bottom data, top diff,
13 (Dtype)1., this−>blobs [0]−>mutable cpu diff());
14 } else {
15 caffe cpu gemm<Dtype>(CblasTrans, CblasNoTrans,
16 N , K , M ,
17 (Dtype)1., top diff, bottom data,
18 (Dtype)1., this−>blobs [0]−>mutable cpu diff());
19 }
20 }
21 if (bias term && this−>param propagate down [1]) {
22 const Dtype∗ top diff = top[0]−>cpu diff();
23 // Gradient with respect to bias
24 caffe cpu gemv<Dtype>(CblasTrans, M , N , (Dtype)1.,

↪→ top diff,
25 bias multiplier .cpu data(), (Dtype)1.,
26 this−>blobs [1]−>mutable cpu diff());
27 }
28 if (propagate down[0]) {
29 const Dtype∗ top diff = top[0]−>cpu diff();
30 // Gradient with respect to bottom data
31 caffe cpu gemm<Dtype>(CblasNoTrans, transpose ?

↪→ CblasTrans : CblasNoTrans,
32 M , K , N ,
33 (Dtype)1., top diff, this−>blobs [0]−>

↪→ cpu data(),
34 (Dtype)0., bottom[0]−>mutable cpu diff

↪→ ());
35 }
36 }

Listing 11: Caffe version: Back InnerProduct

1 template <>
2 void InnerProductLayer<float>::Backward cpu(const vector<Blob

↪→ <float>∗>& top,
3 const vector<bool>& propagate down,
4 const vector<Blob<float>∗>& bottom) {
5
6 if (this−>param propagate down [0]) {
7 if (transpose ) {
8 phast::matrix<float> diff = top[0]−>getDiffAsMatrix(M ,

↪→ N , false);
9 phast::matrix<float> data = bottom[0]−>getDataAsMatrix

↪→ (K , M , true);
10 phast::matrix<float> tmp(K , N , 0);
11 phast::matrix<float> wdiff = this−>blobs [0]−>

↪→ getDiffAsMatrix(K , N , false);
12 phast::dot product(data, diff, tmp);
13 phast::transform(tmp.begin ij(), tmp.end ij(), wdiff.begin ij()

↪→ , wdiff.begin ij(),
14 phast::plus<float>());
15 data.transpose();
16 }
17 else {
18 phast::matrix<float> diff = top[0]−>getDiffAsMatrix(N ,

↪→ M , true);
19 phast::matrix<float> data = bottom[0]−>getDataAsMatrix

↪→ (M , K , false);
20 phast::matrix<float> tmp(N , K , 0);
21 phast::matrix<float> wdiff = this−>blobs [0]−>

↪→ getDiffAsMatrix(N , K , false);
22 phast::dot product(diff, data, tmp);
23 phast::transform(tmp.begin ij(), tmp.end ij(), wdiff.begin ij()

↪→ , wdiff.begin ij(),
24 phast::plus<float>());
25 diff.transpose();
26 }
27 }
28 if (bias term && this−>param propagate down [1]) {
29 phast::matrix<float> diff = top[0]−>getDiffAsMatrix(N , M ,

↪→ true);
30 phast::vector<float> weig = this−>blobs [1]−>

↪→ getDiffAsVector(N );
31
32 phast::transform(diff.begin i(), diff.end i(), weig.begin(),

↪→ reduceMatrixVectors<float>());
33
34 diff.transpose();
35 }
36 if (propagate down[0]) {
37 phast::matrix<float> diff = top[0]−>getDiffAsMatrix(M , N ,

↪→ false);
38 phast::matrix<float> weig = this−>blobs [0]−>

↪→ getDataAsMatrix(N , K , transpose );
39
40 phast::matrix<float> bdiff = bottom[0]−>getDiffAsMatrix(M

↪→ , K , false);
41
42 phast::dot product(diff, weig, bdiff);
43 if(transpose ) weig.transpose();
44 }
45 }

Listing 12: PHAST version: Back
InnerProduct
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4.3.5 ReLU

4.3.5.1 Feed-Forward

ReLU or Rectified-Linear layer applies the ReLU function to each of its inputs. It is mainly used
to remove negative numbers from a neural network, but Caffe has merged it with the Leaky-ReLU.
The difference between a Leaky-ReLU and a ReLU is in negative numbers, ReLU outputs 0s, and
Leaky-ReLU outputs the input value multiplied by a constant (Equation 1 and Listings 13 and 14).

Leaky −ReLU(x) =
{
x if x > 0
ax otherwise (1)

1 for (int i = 0; i < count; ++i) {
2 top data[i] = std::max(bottom data[i], Dtype(0))
3 + negative slope ∗ std::min(bottom data[i], Dtype(0));
4 }

Listing 13: Caffe version: ReLU

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct reluFunc : phast::functor::func scal scal<T, policy> {
3
4 PHAST METHOD reluFunc(T negative) {
5 slope = negative;
6 }
7
8 PHAST METHOD void operator()(phast::functor::scalar<T>&

↪→ in,phast::functor::scalar<T>& out) {
9 out = smax(in, T(0)) + slope ∗ smin(in, T(0));

10 }
11
12 T slope;
13 };

Listing 14: PHAST version: ReLU

4.3.5.2 Back-Propagation

Using the gradient as x, and the original data as y, we have a very similar equation to make the
back-propagation algorithm (Equation 2). Like before, the code is very straight forward (Listings 15
and 16).

Back − Leaky −ReLU(x, y) =
{
x if y > 0
a otherwise (2)

1 for (int i = 0; i < count; ++i) {
2 bottom diff[i] = top diff[i] ∗ ((bottom data[i] > 0)
3 + negative slope ∗ (bottom data[i] <= 0));
4 }

Listing 15: Caffe version: Back ReLU

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct reluBackFunc : phast::functor::func scal scal scal<T, policy
↪→ > {

3
4 PHAST METHOD reluBackFunc(T negative) {
5 slope = negative;
6 }
7
8 PHAST METHOD void operator()(phast::functor::scalar<T>&

↪→ in, phast::functor::scalar<T>& diff, phast::functor::
↪→ scalar<T>& out) {

9 int m0 = in > 0 ? 1 : 0;
10 int m1 = in <= 0 ? 1 : 0;
11 out = diff ∗ (m0 + slope ∗ m1);
12 }
13
14 T slope;
15 };

Listing 16: PHAST version: Back ReLU
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4.3.6 Softmax and Softmax Loss

4.3.6.1 Feed-Forward

In classifiers, a probability distribution over a discrete variable with n possible values, is represented
using the softmax function [20]. Indeed, we require not only that each element to be between 0 and
1, but also that the entire vector sums to 1 so that it represents a valid probability distribution [20].

We are going to apply the softmax function (Equation 3) to each value of the output. As we work
with many outputs at the same time, we apply it over each vector of the data matrix (Listing 17).
It is worth to notice that, most of the code in the PHAST version (Listing 18) is data preparation,
which will be improved in future versions of PHAST.

σ(z)j = ezj∑K
k=1 e

zk
(3)

1 template <typename Dtype>
2 void SoftmaxLayer<Dtype>::Forward cpu(const vector<Blob<

↪→ Dtype>∗>& bottom,
3 const vector<Blob<Dtype>∗>& top) {
4 const Dtype∗ bottom data = bottom[0]−>cpu data();
5 Dtype∗ top data = top[0]−>mutable cpu data();
6 Dtype∗ scale data = scale .mutable cpu data();
7 int channels = bottom[0]−>shape(softmax axis );
8 int dim = bottom[0]−>count() / outer num ;
9 caffe copy(bottom[0]−>count(), bottom data, top data);

10 // We need to subtract the max to avoid numerical issues,
↪→ compute the exp,

11 // and then normalize.
12 for (int i = 0; i < outer num ; ++i) {
13 // initialize scale data to the first plane
14 caffe copy(inner num , bottom data + i ∗ dim, scale data);
15 for (int j = 0; j < channels; j++) {
16 for (int k = 0; k < inner num ; k++) {
17 scale data[k] = std::max(scale data[k],
18 bottom data[i ∗ dim + j ∗ inner num + k]);
19 }
20 }
21 // subtraction
22 caffe cpu gemm<Dtype>(CblasNoTrans, CblasNoTrans,

↪→ channels, inner num ,
23 1, −1., sum multiplier .cpu data(), scale data, 1., top data

↪→ );
24 // exponentiation
25 caffe exp<Dtype>(dim, top data, top data);
26 // sum after exp
27 caffe cpu gemv<Dtype>(CblasTrans, channels, inner num , 1.,
28 top data, sum multiplier .cpu data(), 0., scale data);
29 // division
30 for (int j = 0; j < channels; j++) {
31 caffe div(inner num , top data, scale data, top data);
32 top data += inner num ;
33 }
34 }
35 }

Listing 17: Caffe version: SoftMax

1 template <>
2 void SoftmaxLayer<float>::Forward cpu(const vector<Blob<float

↪→ >∗>& bottom,
3 const vector<Blob<float>∗>& top) {
4 int channels = bottom[0]−>shape(softmax axis );
5 phast::cube<float> data = bottom[0]−>getDataAsCube(

↪→ outer num , channels, inner num );
6 phast::cube<float> out = top[0]−>getDataAsCube(outer num ,

↪→ channels, inner num );
7 phast::vector<float> scale = scale .getDataAsVector(inner num

↪→ );
8
9 phast::copy(data.begin ijk(), data.end ijk(), out.begin ijk());

10
11 auto dataIt = data.begin i();
12 auto outIt = out.begin i();
13
14 for (; dataIt != data.end i() && outIt != out.end i(); dataIt++,

↪→ outIt++) {
15 phast::matrix<float> dataM;
16 phast::matrix<float> outM;
17 dataM.set dev(data.size j(), data.size k(), dataIt.get dev() +

↪→ dataIt.get abs pos());
18 outM.set dev(out.size j(), out.size k(), outIt.get dev() + outIt.

↪→ get abs pos());
19
20 auto dataMIt = dataM.begin i();
21
22 phast::vector<float> tmpRow;
23 tmpRow.set dev(dataM.size j(), dataMIt.get dev() + dataMIt.

↪→ get abs pos());
24 phast::copy(tmpRow.begin(), tmpRow.end(), scale.begin());
25
26 for (; dataMIt != dataM.end i(); dataMIt++) {
27 phast::vector<float> dataV;
28 dataV.set dev(dataM.size j(), dataMIt.get dev() + dataMIt.

↪→ get abs pos());
29 phast::transform(dataV.begin(), dataV.end(), scale.begin(),

↪→ maxFunc<float>());
30 }
31
32 matrixMinusVectorRows<float> matrixMinusVectorRows;
33 matrixMinusVectorRows.vec.link(scale);
34 phast::for each(outM.begin i(), outM.end i(),

↪→ matrixMinusVectorRows);
35 phast::for each(outM.begin ij(), outM.end ij(), expFunc<float

↪→ >());
36 outM.transpose();
37 phast::transform(scale.begin(), scale.end(), outM.begin i(),

↪→ matrixReduceByRows<float>());
38 outM.transpose();
39 matrixDivVectorRows<float> matrixDivVectorRows;
40 matrixDivVectorRows.vec.link(scale);
41 phast::for each(outM.begin i(), outM.end i(),

↪→ matrixDivVectorRows);
42 }
43 }

Listing 18: PHAST version: SoftMax
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4.3.6.2 Back-Propagation

Like in the InnerProduct layer, the objective of the back-propagation stage is not to reverse the feed-
forward stage, but to scale the data to the previous layers in the network (Listings 19 and 20). Same
as before, most of the code is the PHAST version is data preparation.

1 template <typename Dtype>
2 void SoftmaxLayer<Dtype>::Backward cpu(const vector<Blob<

↪→ Dtype>∗>& top,
3 const vector<bool>& propagate down,
4 const vector<Blob<Dtype>∗>& bottom) {
5 const Dtype∗ top diff = top[0]−>cpu diff();
6 const Dtype∗ top data = top[0]−>cpu data();
7 Dtype∗ bottom diff = bottom[0]−>mutable cpu diff();
8 Dtype∗ scale data = scale .mutable cpu data();
9 int channels = top[0]−>shape(softmax axis );

10 int dim = top[0]−>count() / outer num ;
11 caffe copy(top[0]−>count(), top diff, bottom diff);
12 for (int i = 0; i < outer num ; ++i) {
13 // compute dot(top diff, top data) and subtract them from the

↪→ bottom diff
14 for (int k = 0; k < inner num ; ++k) {
15 scale data[k] = caffe cpu strided dot<Dtype>(channels,
16 bottom diff + i ∗ dim + k, inner num ,
17 top data + i ∗ dim + k, inner num );
18 }
19 // subtraction
20 caffe cpu gemm<Dtype>(CblasNoTrans, CblasNoTrans,

↪→ channels, inner num , 1,
21 −1., sum multiplier .cpu data(), scale data, 1., bottom diff

↪→ + i ∗ dim);
22 }
23 // elementwise multiplication
24 caffe mul(top[0]−>count(), bottom diff, top data, bottom diff);
25 }

Listing 19: Caffe version: Back SoftMax

1 template <>
2 void SoftmaxLayer<float>::Backward cpu(const vector<Blob<

↪→ float>∗>& top,
3 const vector<bool>& propagate down,
4 const vector<Blob<float>∗>& bottom) {
5
6 int channels = top[0]−>shape(softmax axis );
7
8 phast::cube<float> topDiff = top[0]−>getDiffAsCube(

↪→ outer num , channels, inner num );
9 phast::cube<float> topData = top[0]−>getDataAsCube(

↪→ outer num , channels, inner num );
10
11 phast::cube<float> botDiff = bottom[0]−>getDiffAsCube(

↪→ outer num , channels, inner num );
12 phast::vector<float> scaler = scale .getDataAsVector(

↪→ inner num );
13
14 phast::copy(topDiff.begin ijk(), topDiff.end ijk(), botDiff.

↪→ begin ijk());
15
16 auto botIt = botDiff.begin i();
17 auto topDIt = topData.begin i();
18
19 for (; botIt != botDiff.end i() && topDIt != topData.end i();

↪→ botIt++, topDIt++) {
20 phast::matrix<float> botM;
21 phast::matrix<float> topDM;
22 botM.set dev(botDiff.size j(), botDiff.size k(), botIt.get dev()

↪→ + botIt.get abs pos());
23 topDM.set dev(topData.size j(), topData.size k(), topDIt.

↪→ get dev() + topDIt.get abs pos());
24
25 botM.transpose();
26 topDM.transpose();
27
28 reduceMatrixVectorByVectorDot<float>

↪→ reduceMatrixVectorByVectorDot;
29 reduceMatrixVectorByVectorDot.scal.link(scaler);
30 phast::transform(botM.begin i(), botM.end i(), topDM.begin i

↪→ (), reduceMatrixVectorByVectorDot);
31
32 botM.transpose();
33 topDM.transpose();
34
35 matrixMinusVectorRows<float> matrixMinusVectorRows;
36 matrixMinusVectorRows.vec.link(scaler);
37 phast::for each(botM.begin i(), botM.end i(),

↪→ matrixMinusVectorRows);
38 }
39
40 phast::transform(botDiff.begin ijk(), botDiff.end ijk(), topData.

↪→ begin ijk(), botDiff.begin ijk(), phast::multiplies<float
↪→ >());

41 }

Listing 20: PHAST version: Back SoftMax

4.3.6.3 With Loss

Regarding the SoftMax with Loss block, it is the same as SoftMax but adding similar code to the
Accuracy Layer into the SoftMax with Loss to calculate the logarithmic error instead of accuracy.
And, like the Accuracy layer, it has not back-propagation except the SoftMax itself.
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4.3.7 Accuracy

4.3.7.1 Feed-Forward

The Accuracy layer is implicit in Caffe, it checks the numbers of good predictions and generates the
corresponding percentage (Listings 21 and 22).

1 for (int j = 0; j < inner num ; ++j) {
2 const int label value =
3 static cast<int>(bottom label[i ∗ inner num + j]);
4 if (has ignore label && label value == ignore label ) {
5 continue;
6 }
7 DCHECK GE(label value, 0);
8 DCHECK LT(label value, num labels);
9 if (top.size() > 1) ++nums buffer .mutable cpu data()[

↪→ label value];
10 const Dtype prob of true class = bottom data[i ∗ dim
11 + label value ∗ inner num + j];
12 int num better predictions = −1; // true class also counts as ”

↪→ better”
13 // Top−k accuracy
14 for (int k = 0; k < num labels && num better predictions <

↪→ top k ; ++k) {
15 num better predictions +=
16 (bottom data[i ∗ dim + k ∗ inner num + j] >=

↪→ prob of true class);
17 }
18 // check if there are less than top k predictions
19 if (num better predictions < top k ) {
20 ++accuracy;
21 if (top.size() > 1) ++top[1]−>mutable cpu data()[label value

↪→ ];
22 }
23 ++count;
24 }

Listing 21: Caffe version: Accuracy

1 template <typename T, unsigned int policy = phast::
↪→ get default policy()>

2 struct doAccuracy : phast::functor::func vec<T, policy> {
3
4 PHAST METHOD doAccuracy(int label , int maxLabels, int

↪→ ignore, int ignoreValue, int isTop, int top k) {
5 label = label ;
6 labels = maxLabels;
7 hasIgnore = ignore;
8 value = ignoreValue;
9 top = isTop;

10 topk = top k;
11 }
12
13 PHAST METHOD T operator()(phast::functor::vector<T>&

↪→ row) {
14 T acc = 0;
15 if (hasIgnore && label == value) return 0;
16 if (label < 0 || label > labels) return 0;
17
18 if (top > 1) num[label]++;
19 T prob = row[label];
20
21 int predicts = −1;
22
23 for (auto it = row.begin(); it != row.end() && predicts < topk

↪→ ; ++it) {
24 if ((∗it) >= prob) predicts++;
25 }
26
27 if (predicts < topk) {
28 ++acc;
29 if (top > 1) out1[label]++;
30 }
31
32 return acc;
33 }
34
35 phast::functor::vector<T> out1;
36 phast::functor::vector<T> num;
37
38 int label;
39 int labels;
40 int hasIgnore;
41 int value;
42 int top;
43 int topk;
44 };

Listing 22: PHAST version: Accuracy

4.3.7.2 Back-Propagation

The Accuracy layer does not have any kind of back-propagation because it does not modify the data.

4.3.8 Pending work

There is some functionality that we have not implemented due to lack of time. In the Accuracy block
test, we have not implemented yet multiple axes checking, it means that our version will not check
against multi-labeled output. Also, due to some PHAST limitations that are going to be solved soon,
we cannot implement the ignore label, which allows ignoring some parts of the batch in the accuracy
measurement. On the other hand, the Convolution block has been only implemented the simplest 2D
convolution using a 2D im2col. Also, we discarded the usage of independent filters using groups until
we get more familiarized with the PHAST library.
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5. Results & Evaluation

5.1 Testbench

In this study, we have used the PHAST library 1.0.1 compiled with GCC 6.3.0 and Cuda 9.0.
Caffe was obtained from the official git repository2, the commit we have used is 99bd99795dcdf0b1
d3086a8d67ab1782a8a08383. Our compute machine is part of GACOP’s computer cluster [21], it is
running CentOS Linux 7.5 1804 with Linux 3.10.0-862.14.4, powered by two Intel(R) Xeon(R) CPU
E5-2603 v3 @ 1.60GHz with 64 GiB RAM memory, and a Geforce GTX 1080 8GB GDDR5X with
Nvidia driver 410.48.

With the original Caffe code, we have trained two neural networks from Caffe examples, both are
LeNet-based networks. The first one is able to classify the MNIST3 database, the network is built from
6 layers: 2 Convolutions, 2 Pooling, and 2 InnerProduct. The second one is designed for CIFAR104

database, it has 8 layers: 3 Convolutions, 3 Pooling, and 2 InnerProduct. Additionally, both networks
have a SoftMax layer with loss, an Accuracy layer, and at least 1 ReLU function.

We have successfully run both neural networks in CPU and GPU using PHAST. We obtain the
same results as the original CPU Caffe’s implementation. To check that the results are the same,
we have used the set of inputs that Caffe provides, then we have checked several parameters such
as the output of the network, the accuracy, the loss, and some intermediate matrices. Despite we
have noticed that the accuracy and the loss are enough to validate the results, we continue using the
intermediate matrices and the outputs to be sure that all was working properly. Now, we are able to
choose between the CPU or the GPU version depending on the makefile we use.

5.2 Experiences

During the development, we have confirmed that applying a high performance programming model is
not much different from the programming methodologies we are used to. There are some exceptions,
such as the Convolution block and the Accuracy block, where rethinking the algorithm is necessary,
but despite that, most of the high performance models are based in well-known approaches, as we
have mentioned before.

5.3 Caffe Tests

Once our testbench is running as intended, we decide to test how accurate is our implementation to
the original implementation. Therefore, using Caffe tests files, we have checked all the blocks we have
ported to PHAST that have a test (Table 3). We notice that all the functionality we have ported is
working, and tests only fail on the unimplemented functionality.

Block Passed Not Passed Total %Passed
Convolution 3 12 15 20
Pooling 11 0 11 100
InnerProduct 9 0 9 100
SoftMax 4 0 4 100
SoftMax Loss 4 0 4 100
Accuracy 9 3 12 75

Table 3: Each available test for the block we have modify in single precision floating point numbers
and the number of tests passed and not passed.

2https://github.com/BVLC/caffe
3More information: http://yann.lecun.com/exdb/mnist/
4More information: https://www.cs.toronto.edu/˜kriz/cifar.html
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5.4 Performance

Since this is a ongoing project, we are not ready to give performance results because our current tests
are very small. But, compared to Caffe’s original CPU code using openblas, our code was running
10 times slower. After some little changes, we improved it by a factor of 2x. But these are not final
results and they can be improved by finding and fixing the current hotspots. Also, we are trying to
reduce the number of copies made at each operation, by adopting part of the code to use read-only
data, or maintain some structures as long as possible. It is like modernizing our modernized code.
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6. Conclusions & Future Work

In this work, we aim to find the most relevant high-performance portable programming models avail-
able and classify them into a table to be able to easily use the one that fits our needs. But, to actually
understand how these models work, we selected one of them, PHAST, and applied it to a real case.
Since deep learning and neural networks are very important today, we selected one of the firsts deep
learning framework (Caffe) and adapted it to use PHAST.

From our high performance portable programming model classification, we found that there are
many available models, each one with its own characteristics. Nowadays, all is merged and making a
strict classification is more subjective that it should be, but we think that we have stablish a baseline
that could be used to classify the majority of the available models.

In this work, we have seen that PHAST is suitable to be used in real applications, it is easy to use
and remembers well-established highly-expressive techniques.

There are several works left behind due to lack of time, among them we have:

• Explore the remainder programming models and devices: There are many models we have left
behind, exploring them can open new characteristics in the classification table.

• Complete the port of Caffe to PHAST: We plan to release Caffe freely when the port is finished.
We think that the information gathers during this port is very useful for improving PHAST.

• Extend our work to another device: Increasing the portability is one of our main goals in this
work, another compatible device goes to give us valuable information when developing using
these programming models.

• Improve the performance: Our firsts results show that checking the code it can be greatly
improved with no so much effort.

Acknowledgments

We are glad to thank Sandro Bartolini and Biagio Peccerillo, from University of Siena, for granting
us the demo version of the PHAST library and all the support given during this period, allowing us
to develop this project as a joint collaboration.

Page 24



REFERENCES

References

[1] Antonio Gonzalez. Trends in processor architecture. CoRR, abs/1801.05215, 2018.

[2] John L. Hennessy and David A. Patterson. A new golden age for computer architecture. Commun.
ACM, 62(2):48–60, January 2019.

[3] Intel. Intel’s ‘one api’ project delivers unified programming model
across diverse architectures. https://newsroom.intel.com/news/
intels-one-api-project-delivers-unified-programming-model.

[4] JR Neely. Doe centers of excellence performance portability meeting. Technical Report LLNL-
TR-700962, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2016.

[5] Christian-A. Bohn. Kohonen feature mapping through graphics hardware. In In Proceedings of
Int. Conf. on Compu. Intelligence and Neurosciences, pages 64–67, 1998.

[6] Vaughn Betz. FPGA Architecture for the Challenge. http://www.eecg.toronto.edu/˜vaughn/
challenge/fpga_arch.html.

[7] V. Antinyan, A. B. Sandberg, and M. Staron. A pragmatic view on code complexity management.
Computer, 52(2):14–22, Feb 2019.

[8] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle. Deep learning for
computational biology. Molecular Systems Biology, 12(7):878, 2016.

[9] W. G. Hatcher and W. Yu. A survey of deep learning: Platforms, applications and emerging
research trends. IEEE Access, 6:24411–24432, 2018.

[10] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel programming model.
In Proceedings of the IFIP International Conference on Network and Parallel Computing, NPC
’08, pages 266–275, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] Tim Lewis. OpenMP FAQ. https://www.openmp.org/about/openmp-faq/.

[12] OpenACC.org organization. Homepage | OpenACC. https://www.openacc.org/.

[13] Barcelona Supercomputing Center. The OmpSs Programming Model | Programming Models @
BSC. https://pm.bsc.es/ompss.

[14] The Khronos Group Inc. Opencl overview. https://www.khronos.org/opencl/.

[15] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of Parallel and
Distributed Computing, 74(12):3202 – 3216, 2014. Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[16] Biagio Peccerillo and Sandro Bartolini. PHAST library - enabling single-source and high perfor-
mance code for gpus and multi-cores. In 2017 International Conference on High Performance
Computing & Simulation, HPCS 2017, Genoa, Italy, July 17-21, 2017, pages 715–718, 2017.
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Page 26

http://www.deeplearningbook.org
http://www.deeplearningbook.org


LIST OF ACRONYMS

Acronyms

ANN Artificial Neural Network. 2
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DNN Deep Neural Network. 1, 10
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